論文の概要: Upper Bounds for Learning in Reproducing Kernel Hilbert Spaces for Orbits of an Iterated Function System
- arxiv url: http://arxiv.org/abs/2410.08361v1
- Date: Thu, 10 Oct 2024 20:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 03:46:24.225616
- Title: Upper Bounds for Learning in Reproducing Kernel Hilbert Spaces for Orbits of an Iterated Function System
- Title(参考訳): 反復関数系の軌道に対するカーネルヒルベルト空間の再現学習のための上界
- Authors: Priyanka Roy, Susanne Saminger-Platz,
- Abstract要約: 学習理論における重要な問題は、ある入力$x$と対応する出力$y$の関係を近似した関数$f$を計算することである。
この近似はサンプル点 $(x_t,y_t)_t=1m$ に基づいている。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the key problems in learning theory is to compute a function $f$ that closely approximates the relationship between some input $x$ and corresponding output $y$, such that $y\approx f(x)$. This approximation is based on sample points $(x_t,y_t)_{t=1}^{m}$, where the function $f$ can be approximated within reproducing kernel Hilbert spaces using various learning algorithms. In the context of learning theory, it is usually customary to assume that the sample points are drawn independently and identically distributed (i.i.d.) from an unknown underlying distribution. However, we relax this i.i.d. assumption by considering an input sequence $(x_t)_{t\in {\mathbb N}}$ as a trajectory generated by an iterated function system, which forms a particular Markov chain, with $(y_t)_{t\in {\mathbb N}}$ corresponding to an observation sequence when the model is in the corresponding state $x_t$. For such a process, we approximate the function $f$ using the Markov chain stochastic gradient algorithm and estimate the error by deriving upper bounds within reproducing kernel Hilbert spaces.
- Abstract(参考訳): 学習理論における重要な問題の1つは、ある入力$x$と対応する出力$y$の関係を近似した関数$f$を計算し、$y\approx f(x)$である。
この近似はサンプル点 $(x_t,y_t)_{t=1}^{m}$ に基づいている。
学習理論の文脈では、通常、標本点が独立に描画され、未知の基底分布から同一に分布する(すなわち、d)と仮定する。
しかし、この仮定は、入力列 $(x_t)_{t\in {\mathbb N}}$ を、モデルが対応する状態 $x_t$ にあるときの観測シーケンスに対応する$(y_t)_{t\in {\mathbb N}}$ で特定のマルコフ連鎖を形成する反復関数系によって生成される軌道として考慮することで緩和する。
そのようなプロセスに対して、マルコフ連鎖確率勾配アルゴリズムを用いて関数$f$を近似し、再現されたカーネルヒルベルト空間内の上限を導出することで誤差を推定する。
関連論文リスト
- On the Convergence of Irregular Sampling in Reproducing Kernel Hilbert Spaces [0.0]
本稿では,カーネルと入力データの両方に対する最小主義的仮定の下で,カーネル回帰の近似特性について論じる。
我々はまず、カーネルのRKHS基準でエラー推定を証明した。
これにより、コンパクト領域上でのカーネル回帰の均一収束に関する新たな結果が導かれる。
論文 参考訳(メタデータ) (2025-04-18T10:57:16Z) - Mirror Descent on Reproducing Kernel Banach Spaces [12.716091600034543]
本稿では,再生カーネルを用いたバナッハ空間の学習問題に対処する。
再生カーネルを用いてバナッハ空間の双対空間における勾配ステップを利用するアルゴリズムを提案する。
実際にこのアルゴリズムをインスタンス化するために、$p$-normのRKBSの新しいファミリーを導入する。
論文 参考訳(メタデータ) (2024-11-18T02:18:32Z) - Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
シングルインデックスモデル (SIM) は $sigma(mathbfwast cdot mathbfx)$ という形式の関数であり、$sigma: mathbbR to mathbbR$ は既知のリンク関数であり、$mathbfwast$ は隠れ単位ベクトルである。
適切な学習者が$L2$-error of $O(mathrmOPT)+epsilon$。
論文 参考訳(メタデータ) (2024-11-08T17:10:38Z) - Near-Optimal and Tractable Estimation under Shift-Invariance [0.21756081703275998]
そのような信号のクラスは、非常にリッチである:$mathbbCn$ 上のすべての指数振動を含み、合計$s$ である。
このクラスの統計複雑性は、$(delta)$-confidence $ell$-ballの半径2乗最小マックス周波数によって測定されるが、$s$-sparse信号のクラス、すなわち$Oleft(slog(en) + log(delta-1)right) cdot log(en/s)とほぼ同じであることを示す。
論文 参考訳(メタデータ) (2024-11-05T18:11:23Z) - Semi-Supervised Laplace Learning on Stiefel Manifolds [48.3427853588646]
グラフベースで教師付きサンプルを低ラベルレートで作成するためのフレームワークSequential Subspaceを開発した。
我々の手法は極めて低いレートで、高いラベルレートで達成できる。
論文 参考訳(メタデータ) (2023-07-31T20:19:36Z) - Decentralized Online Learning for Random Inverse Problems Over Graphs [6.423798607256407]
ヒルベルト空間におけるアルゴリズムの安定性の収束性は、$_$-bounded martingale difference 項で表される。
ネットワークグラフが連結され、フォワード演算子の列が励起条件の無限次元時間持続性を満たすなら、全てのノードの推定は平均平方である。
非定常オンラインデータに基づく分散オンライン学習アルゴリズムをRKHSで提案する。
論文 参考訳(メタデータ) (2023-03-20T08:37:08Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - On the Self-Penalization Phenomenon in Feature Selection [69.16452769334367]
カーネル群に基づく暗黙の空間性誘導機構について述べる。
アプリケーションとしては、この疎結合誘導機構を使用して、特徴選択に一貫性のあるアルゴリズムを構築します。
論文 参考訳(メタデータ) (2021-10-12T09:36:41Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
我々は、勾配推定が末尾を持つ可能性のある一階アルゴリズムを用いたヒルベルト非最適化を考える。
本研究では, 勾配, 運動量, 正規化勾配勾配の収束を高確率臨界点に収束させることと, 円滑な損失に対する最もよく知られた繰り返しを示す。
論文 参考訳(メタデータ) (2021-06-28T00:17:01Z) - Optimal Spectral Recovery of a Planted Vector in a Subspace [80.02218763267992]
我々は、$ell_4$ノルムが同じ$ell$ノルムを持つガウスベクトルと異なるプラントベクトル$v$の効率的な推定と検出について研究する。
規則$n rho gg sqrtN$ では、大クラスのスペクトル法(そしてより一般的には、入力の低次法)は、植込みベクトルの検出に失敗する。
論文 参考訳(メタデータ) (2021-05-31T16:10:49Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
我々は,非log-concaveとなる分布のクラスからサンプリングするために,勾配ランゲヴィンダイナミクス(SGLD)の新たな収束解析を行う。
我々のアプローチの核心は、補助的時間反転型マルコフ連鎖を用いたSGLDのコンダクタンス解析である。
論文 参考訳(メタデータ) (2020-10-19T15:23:18Z) - Early stopping and polynomial smoothing in regression with reproducing kernels [2.0411082897313984]
再生カーネルヒルベルト空間(RKHS)における反復学習アルゴリズムの早期停止問題について検討する。
本稿では,いわゆる最小不一致原理に基づく検証セットを使わずに早期停止を行うデータ駆動型ルールを提案する。
提案したルールは、異なるタイプのカーネル空間に対して、ミニマックス最適であることが証明されている。
論文 参考訳(メタデータ) (2020-07-14T05:27:18Z) - Stochastic Gradient Descent in Hilbert Scales: Smoothness,
Preconditioning and Earlier Stopping [0.0]
我々は、カーネルヒルベルト空間(RKHS)の再現における最小二乗学習を検討し、古典的なSGD解析をヒルベルトスケールの学習環境にまで拡張する。
十分に特定されたモデルであっても、従来のベンチマークスムーズ性仮定の違反は学習率に大きな影響を及ぼすことを示す。
さらに、ミス特定モデルに対しては、適切なヒルベルトスケールでのプレコンディショニングが反復回数を減らすのに役立つことを示す。
論文 参考訳(メタデータ) (2020-06-18T20:22:04Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation [30.137884459159107]
連続状態と行動空間を用いた強化学習において,Q$関数を効率よく学習する方法を考える。
我々は、$epsilon$-Schmidt $Q$-functionと$widetildeO(frac1epsilonmax(d1, d_2)+2)$のサンプル複雑性を求める単純な反復学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-06-11T00:55:35Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。