論文の概要: Linear Convergence of Diffusion Models Under the Manifold Hypothesis
- arxiv url: http://arxiv.org/abs/2410.09046v1
- Date: Fri, 11 Oct 2024 17:58:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:58:09.764791
- Title: Linear Convergence of Diffusion Models Under the Manifold Hypothesis
- Title(参考訳): マニフォールド仮説下における拡散モデルの線形収束
- Authors: Peter Potaptchik, Iskander Azangulov, George Deligiannidis,
- Abstract要約: クルバック・リーブラー(KL)の発散に収束するステップの数は、内在次元$Leid$における線型(対数項まで)であることが示される。
また、この線形依存は鋭いことを示す。
- 参考スコア(独自算出の注目度): 5.040884755454258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Score-matching generative models have proven successful at sampling from complex high-dimensional data distributions. In many applications, this distribution is believed to concentrate on a much lower $d$-dimensional manifold embedded into $D$-dimensional space; this is known as the manifold hypothesis. The current best-known convergence guarantees are either linear in $D$ or polynomial (superlinear) in $d$. The latter exploits a novel integration scheme for the backward SDE. We take the best of both worlds and show that the number of steps diffusion models require in order to converge in Kullback-Leibler~(KL) divergence is linear (up to logarithmic terms) in the intrinsic dimension $d$. Moreover, we show that this linear dependency is sharp.
- Abstract(参考訳): スコアマッチング生成モデルは複雑な高次元データ分布のサンプリングに成功している。
多くの応用において、この分布は$D$次元空間に埋め込まれたより低い$d$次元多様体に集中していると考えられている。
現在の最もよく知られた収束保証は$D$の線型あるいは$d$の多項式(超線型)である。
後者は、後方SDEのための新しい統合スキームを利用する。
両世界のベストを尽くし、クルバック・リーブル~(KL) の発散に収束するために必要となるステップ拡散モデルの数は、内在次元$d$の線型(対数項まで)であることを示す。
さらに,この線形依存は鋭いことを示す。
関連論文リスト
- Convergence of Diffusion Models Under the Manifold Hypothesis in High-Dimensions [6.9408143976091745]
Denoising Diffusion Probabilistic Models (DDPM)は、高次元データ分布から合成データを生成するために使用される強力な最先端手法である。
我々は、多様体仮説の下でDDPMを研究し、スコアの学習の観点から、周囲次元に依存しないレートを達成することを証明した。
サンプリングの面では、周囲次元 w.r.t, Kullback-Leibler 発散率 w.r.t, $O(sqrtD)$ w.r.t. ワッサーシュタイン距離 w.r.t に依存しないレートを得る。
論文 参考訳(メタデータ) (2024-09-27T14:57:18Z) - Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity [11.71206628091551]
拡散モデルは、訓練と評価に費用がかかるため、拡散モデルの推論コストを削減することが大きな目標である。
並列サンプリング手法であるHh2024parallelを用いて拡散モデルを高速化する実験的な成功に触発されて,サンプリングプロセスを各ブロック内に並列化可能なPicard繰り返しを持つ$mathcalO(1)$ブロックに分割することを提案する。
我々の結果は、高速で効率的な高次元データサンプリングの可能性に光を当てた。
論文 参考訳(メタデータ) (2024-05-24T23:59:41Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
データ次元において線形である第1収束境界を提供する。
拡散モデルは任意の分布を近似するために少なくとも$tilde O(fracd log2(1/delta)varepsilon2)$ stepsを必要とすることを示す。
論文 参考訳(メタデータ) (2023-08-07T16:01:14Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Diagnosing and Fixing Manifold Overfitting in Deep Generative Models [11.82509693248749]
ニューラルネットワークを使ってフレキシブルな高次元密度を構築する。
観測データは高次元空間に埋め込まれた低次元多様体上に存在することを示す。
そこで本研究では,次元削減ステップと最大線密度推定を併用した2段階の手順のクラスを提案する。
論文 参考訳(メタデータ) (2022-04-14T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。