Fed-pilot: Optimizing LoRA Allocation for Efficient Federated Fine-Tuning with Heterogeneous Clients
- URL: http://arxiv.org/abs/2410.10200v2
- Date: Fri, 20 Jun 2025 20:43:04 GMT
- Title: Fed-pilot: Optimizing LoRA Allocation for Efficient Federated Fine-Tuning with Heterogeneous Clients
- Authors: Zikai Zhang, Rui Hu, Ping Liu, Jiahao Xu,
- Abstract summary: We propose Fed-pilot, a memory-efficient federated fine-tuning framework.<n>It enables memory-constrained clients to participate in Low-Rank Adaptation (LoRA)-based fine-tuning by training only a subset of LoRA modules locally.<n>To the best of our knowledge, this is the first study on federated fine-tuning of FMs that integrates memory-constrained optimization.
- Score: 11.102441622530181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning enables the fine-tuning of foundation models (FMs) across distributed clients for specific tasks; however, its scalability is limited by the heterogeneity of client memory capacities. In this work, we propose Fed-pilot, a memory-efficient federated fine-tuning framework. It enables memory-constrained clients to participate in Low-Rank Adaptation (LoRA)-based fine-tuning by training only a subset of LoRA modules locally. Fed-pilot identifies the optimal selection of trainable LoRA modules as a knapsack optimization problem, maximizing model performance under memory constraints for each client. To mitigate inconsistencies arising from heterogeneous module allocations and Non-IID data, Fed-pilot employs a novel aggregation rule that dynamically compensates for under-updated layers. Extensive experiments on five diverse datasets across various heterogeneous data settings demonstrate Fed-pilot's effectiveness and efficiency compared to state-of-the-art methods. To the best of our knowledge, this is the first study on federated fine-tuning of FMs that integrates memory-constrained optimization. The code will be publicly available.
Related papers
- FedVLM: Scalable Personalized Vision-Language Models through Federated Learning [3.262230127283452]
Vision-language models (VLMs) demonstrate impressive zero-shot and few-shot learning capabilities.<n>Fine-tuning these models at scale remains challenging in federated environments where data is decentralized and non-iid across clients.<n>We propose FedVLM, a federated LoRA fine-tuning framework that enables decentralized adaptation of VLMs while preserving model privacy.
arXiv Detail & Related papers (2025-07-23T00:05:02Z) - FLAME: Towards Federated Fine-Tuning Large Language Models Through Adaptive SMoE [21.860699562235776]
FLAME is a novel federated learning framework based on the Sparse Mixture-of-Experts (SMoE) architecture.<n>It retains full (uncompressed) global LoRA matrices and achieves client-side adaptability by varying the number of activated experts per client.<n>It tackles these challenges through a lightweight rescaling mechanism and an activation-aware aggregation scheme.
arXiv Detail & Related papers (2025-06-19T21:02:19Z) - Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation [47.82423317739088]
This paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation.
Experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions.
arXiv Detail & Related papers (2025-03-31T09:18:42Z) - Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data [16.844142562389443]
Fine-tuning large language models (LLMs) via federated learning, i.e., FedLLM, has been proposed to adapt LLMs for various downstream applications in a privacy-preserving way.
To reduce the fine-tuning costs on resource-constrained devices, FedLoRA is proposed to fine-tune only a small subset of model parameters by integrating low-rank adaptation (LoRA) into FedLLM.
Here, we propose a hierarchical FedLoRA framework, termed HierFedLoRA, to address these challenges.
arXiv Detail & Related papers (2025-03-27T07:05:22Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.<n>This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.<n>Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models [21.953204885495573]
This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore is a more effective alternative, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
arXiv Detail & Related papers (2024-10-30T15:23:44Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.
We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.
Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters.
Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters.
arXiv Detail & Related papers (2024-09-09T18:21:23Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data.
Many domain-specific data are privately distributed across multiple owners.
We introduce FedBiOT, a resource-efficient LLM fine-tuning approach to federated learning.
arXiv Detail & Related papers (2024-06-25T16:45:47Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z) - Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation
Models [20.707283766914017]
HetLoRA allows heterogeneous ranks across client devices and efficiently aggregates and distributes these heterogeneous LoRA modules.
HetLoRA achieves improved convergence speed and final performance compared to homogeneous LoRA.
arXiv Detail & Related papers (2024-01-12T07:52:07Z) - FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the
Power of Heterogeneous Clients [50.13097183691517]
In real-world federated scenarios, there often exist a multitude of heterogeneous clients with varying computation and communication resources.
We propose a novel federated tuning algorithm, FedRA.
In each communication round, FedRA randomly generates an allocation matrix.
It reorganizes a small number of layers from the original model based on the allocation matrix and fine-tunes using adapters.
arXiv Detail & Related papers (2023-11-19T04:43:16Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.