論文の概要: Toward Efficient Kernel-Based Solvers for Nonlinear PDEs
- arxiv url: http://arxiv.org/abs/2410.11165v1
- Date: Tue, 15 Oct 2024 01:00:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:42.499720
- Title: Toward Efficient Kernel-Based Solvers for Nonlinear PDEs
- Title(参考訳): 非線形PDEの効率的なカーネルベース解法に向けて
- Authors: Zhitong Xu, Da Long, Yiming Xu, Guang Yang, Shandian Zhe, Houman Owhadi,
- Abstract要約: 本稿では,非線形偏微分方程式(PDE)を効率的に解くための新しいカーネル学習フレームワークを提案する。
カーネルに微分演算子を埋め込む最先端のカーネルソルバとは対照的に,本手法ではこれらの演算子をカーネルから排除する。
我々は、標準カーネル形式を用いて解をモデル化し、導関数を計算するために補間剤を区別する。
- 参考スコア(独自算出の注目度): 19.975293084297014
- License:
- Abstract: This paper introduces a novel kernel learning framework toward efficiently solving nonlinear partial differential equations (PDEs). In contrast to the state-of-the-art kernel solver that embeds differential operators within kernels, posing challenges with a large number of collocation points, our approach eliminates these operators from the kernel. We model the solution using a standard kernel interpolation form and differentiate the interpolant to compute the derivatives. Our framework obviates the need for complex Gram matrix construction between solutions and their derivatives, allowing for a straightforward implementation and scalable computation. As an instance, we allocate the collocation points on a grid and adopt a product kernel, which yields a Kronecker product structure in the interpolation. This structure enables us to avoid computing the full Gram matrix, reducing costs and scaling efficiently to a large number of collocation points. We provide a proof of the convergence and rate analysis of our method under appropriate regularity assumptions. In numerical experiments, we demonstrate the advantages of our method in solving several benchmark PDEs.
- Abstract(参考訳): 本稿では,非線形偏微分方程式(PDE)を効率的に解くための新しいカーネル学習フレームワークを提案する。
カーネルに微分演算子を埋め込んだ最先端のカーネルソルバとは対照的に,多数のコロケーションポイントを持つ課題を提起するため,本手法ではこれらの演算子をカーネルから排除する。
我々は、標準カーネル補間形式を用いて解をモデル化し、導関数を計算するために補間剤を区別する。
我々のフレームワークは、ソリューションとそのデリバティブ間の複雑なグラム行列構築の必要性をなくし、簡単な実装とスケーラブルな計算を可能にします。
例えば、コロケーションポイントをグリッドに割り当て、製品カーネルを採用して、補間においてKronecker積構造を生成する。
この構造により、全グラム行列の計算を避け、コストを削減し、多数のコロケーションポイントに効率的にスケーリングできる。
適切な正則性仮定の下で,本手法の収束と速度解析の証明を行う。
数値実験では、いくつかのベンチマークPDEを解く際の手法の利点を実証する。
関連論文リスト
- KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems [0.0]
連続時間変数を含む最適制御問題の解法として,kantrolフレームワークを導入する。
整数階数力学の正確な微分を計算するために, 自動微分がいかに利用されるかを示す。
2次元部分熱微分方程式の最適制御を含む多次元問題に取り組む。
論文 参考訳(メタデータ) (2024-09-10T17:12:37Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian
Processes [3.750429354590631]
本稿では、高密度カーネル行列に対するスパースColesky分解アルゴリズムを提案する。
我々は, 幅広い非線形PDEのクラスに対して, アルゴリズムのニア線形空間/時間複雑性を数値的に説明する。
論文 参考訳(メタデータ) (2023-04-03T18:35:28Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Reconstructing Kernel-based Machine Learning Force Fields with
Super-linear Convergence [0.18416014644193063]
我々は、プレコンディショナーを構築するためのNystr"om-typeメソッドの幅広いクラスについて考察する。
検討されたすべての方法は、支配的なカーネルスペクトルを近似するために、インジェクション(カーネル)列の代表的なサブセットを特定することを目的としている。
論文 参考訳(メタデータ) (2022-12-24T13:45:50Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Solving and Learning Nonlinear PDEs with Gaussian Processes [11.09729362243947]
非線形偏微分方程式を解くための単純で厳密で統一された枠組みを提案する。
提案手法は、コロケーションカーネル法を非線形PDEとIPに自然に一般化する。
IP では,PDE におけるパラメータの同定と解の数値近似を反復的に行う手法が提案されているが,アルゴリズムは両手法を同時に扱う。
論文 参考訳(メタデータ) (2021-03-24T03:16:08Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures [31.986482149142503]
我々はこの質問を,強調指標を導入することで,分布視点として捉えた。
一連の非PDカーネルは、特定の有限ボレル測度の線型結合に関連付けられる。
特に、このソリューションは、大規模なサンプルケースで非PDカーネルをスケールするために、実際に計算的に実装可能である。
論文 参考訳(メタデータ) (2020-05-30T12:10:35Z) - SimpleMKKM: Simple Multiple Kernel K-means [49.500663154085586]
単純なマルチカーネルk-means(SimpleMKKM)と呼ばれる,単純で効果的なマルチカーネルクラスタリングアルゴリズムを提案する。
我々の基準は、カーネル係数とクラスタリング分割行列における難解な最小化最大化問題によって与えられる。
クラスタリング一般化誤差の観点から,SimpleMKKMの性能を理論的に解析する。
論文 参考訳(メタデータ) (2020-05-11T10:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。