論文の概要: LoSAM: Local Search in Additive Noise Models with Unmeasured Confounders, a Top-Down Global Discovery Approach
- arxiv url: http://arxiv.org/abs/2410.11759v3
- Date: Sun, 10 Nov 2024 19:03:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:59.298058
- Title: LoSAM: Local Search in Additive Noise Models with Unmeasured Confounders, a Top-Down Global Discovery Approach
- Title(参考訳): LoSAM: 未測定の共同創業者による付加雑音モデルの局所探索 - トップダウンのグローバルディスカバリアプローチ
- Authors: Sujai Hiremath, Promit Ghosal, Kyra Gan,
- Abstract要約: 加法雑音モデル(LoSAM)における局所探索を導入する。
LoSAMは、局所因果構造を一般的な付加雑音設定に活用する既存の非線形手法を一般化する。
我々はLoSAMがランタイムを実現し、新しいサブストラクチャを活用することでランタイムと効率を向上させることを示す。
- 参考スコア(独自算出の注目度): 2.4305626489408465
- License:
- Abstract: We address the challenge of causal discovery in structural equation models with additive noise without imposing additional assumptions on the underlying data-generating process. We introduce local search in additive noise model (LoSAM), which generalizes an existing nonlinear method that leverages local causal substructures to the general additive noise setting, allowing for both linear and nonlinear causal mechanisms. We show that LoSAM achieves polynomial runtime, and improves runtime and efficiency by exploiting new substructures to minimize the conditioning set at each step. Further, we introduce a variant of LoSAM, LoSAM-UC, that is robust to unmeasured confounding among roots, a property that is often not satisfied by functional-causal-model-based methods. We numerically demonstrate the utility of LoSAM, showing that it outperforms existing benchmarks.
- Abstract(参考訳): 本稿では, 付加雑音を伴う構造方程式モデルにおける因果発見の課題に, 基礎となるデータ生成過程に仮定を加えることなく対処する。
本稿では,局所的な因果的部分構造を一般の加法的雑音設定に利用し,線形因果的機構と非線形因果的機構の両方を可能にする,既存の非線形手法を一般化した加法モデル(LoSAM)を提案する。
そこで我々は,LoSAMが多項式ランタイムを実現し,各ステップの条件設定を最小化するために,新しいサブストラクチャを活用することにより,実行時と効率を向上させることを示す。
さらに,機能的因果モデルに基づく手法でしばしば満たされない特性であるルート間の非測定的共役に頑健な LoSAM-UC の変種 (LoSAM-UC) を導入する。
LoSAMの実用性を数値的に示し、既存のベンチマークより優れていることを示す。
関連論文リスト
- SAM-DiffSR: Structure-Modulated Diffusion Model for Image
Super-Resolution [49.205865715776106]
本稿では,SAM-DiffSRモデルを提案する。このモデルでは,ノイズをサンプリングする過程において,SAMからの微細な構造情報を利用することで,推論時に追加の計算コストを伴わずに画像品質を向上させることができる。
DIV2Kデータセット上でPSNRの最大値で既存の拡散法を0.74dB以上越えることにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-27T01:57:02Z) - Order-based Structure Learning with Normalizing Flows [7.972479571606131]
観測データの因果構造を推定することは、グラフサイズと超指数的にスケールする難しい探索問題である。
既存の手法では、連続緩和を用いてこの問題を計算的に取り扱えるようにしているが、しばしばデータ生成過程を加法雑音モデル(ANM)に制限する。
自己回帰正規化フローを用いてこれらの仮定を緩和するフレームワークである,正規化フローを用いた秩序に基づく構造学習(OSLow)を提案する。
論文 参考訳(メタデータ) (2023-08-14T22:17:33Z) - Causal Discovery with Score Matching on Additive Models with Arbitrary
Noise [37.13308785728276]
因果発見法は、構造識別可能性を保証するために必要な仮定のセットによって本質的に制約される。
本稿では,雑音項のガウス性に反するエッジ反転のリスクを解析し,この仮説の下での推論の欠点を示す。
本稿では,一般的な雑音分布を持つ付加非線形モデルに基づいて生成されたデータから,因果グラフ内の変数の位相的順序付けを推定する新しい手法を提案する。
これは、最小限の仮定と、合成データに基づいて実験的にベンチマークされた技術性能の状態を持つ因果探索アルゴリズムであるNoGAMに繋がる。
論文 参考訳(メタデータ) (2023-04-06T17:50:46Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Online Incremental Non-Gaussian Inference for SLAM Using Normalizing
Flows [34.297172076718354]
NF-iSAMはニューラルネットワークの表現力を利用して正規化フローをモデル化し、高非線形および非ガウス因子グラフの結合後部を正確に近似することができる。
我々はNF-iSAMの性能を実証し,iSAM2 (Gaussian) や mm-iSAM (non-Gaussian) といった最先端のアルゴリズムと比較した。
論文 参考訳(メタデータ) (2021-10-02T21:07:05Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix
Recovery [8.581512812219737]
本稿では,ノイズや外周波で劣化した観測結果から低ランク行列を復元する新しい枠組みを提案する。
平方根のラッソにインスパイアされたこの新しい定式化は、ノイズレベルに関する事前の知識を必要としない。
正規化パラメータの1つの普遍的な選択は、(事前未知の)雑音レベルに比例した再構成誤差を達成するのに十分であることを示す。
論文 参考訳(メタデータ) (2021-06-17T02:28:11Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Data-driven learning of robust nonlocal physics from high-fidelity
synthetic data [3.9181541460605116]
非局所モデルに対する主要な課題は、それらを第一原理から導き出す解析的複雑さであり、しばしばそれらの使用は後続法として正当化される。
本研究では、データから非局所モデルを取り出し、これらの課題を回避し、結果のモデルフォームに対するデータ駆動的正当化を提供する。
論文 参考訳(メタデータ) (2020-05-17T22:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。