論文の概要: Augmentation Policy Generation for Image Classification Using Large Language Models
- arxiv url: http://arxiv.org/abs/2410.13453v1
- Date: Thu, 17 Oct 2024 11:26:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:40.454213
- Title: Augmentation Policy Generation for Image Classification Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた画像分類のための拡張ポリシー生成
- Authors: Ant Duru, Alptekin Temizel,
- Abstract要約: 本稿では,大規模言語モデルを用いて効率的な拡張ポリシーを自動生成する戦略を提案する。
提案手法は医用画像データセットを用いて評価され,最先端の手法よりも明確な改善が見られた。
- 参考スコア(独自算出の注目度): 3.038642416291856
- License:
- Abstract: Automated data augmentation methods have significantly improved the performance and generalization capability of deep learning models in image classification. Yet, most state-of-the-art methods are optimized on common benchmark datasets, limiting their applicability to more diverse or domain-specific data, such as medical datasets. In this paper, we propose a strategy that uses large language models to automatically generate efficient augmentation policies, customized to fit the specific characteristics of any dataset and model architecture. The proposed method iteratively interacts with an LLM to obtain and refine the augmentation policies on model performance feedback, creating a dataset-agnostic data augmentation pipeline. The proposed method was evaluated on medical imaging datasets, showing a clear improvement over state-of-the-art methods. The proposed approach offers an adaptive and scalable solution. Although it increases computational cost, it significantly boosts model robustness, automates the process, and minimizes the need for human involvement during model development.
- Abstract(参考訳): 画像分類におけるディープラーニングモデルの性能と一般化能力は,自動データ拡張法により大幅に向上した。
しかし、最先端のほとんどのメソッドは、一般的なベンチマークデータセットに最適化されており、医療データセットのようなより多様な、あるいはドメイン固有のデータに適用性を制限する。
本稿では、大規模言語モデルを用いて効率的な拡張ポリシーを自動生成し、データセットやモデルアーキテクチャの特徴に適合するようにカスタマイズする戦略を提案する。
提案手法は,LLMと反復的に相互作用し,モデル性能フィードバックの強化ポリシを取得し,改良し,データセットに依存しないデータ拡張パイプラインを作成する。
提案手法は医用画像データセットを用いて評価され,最先端の手法よりも明確な改善が見られた。
提案されたアプローチは適応的でスケーラブルなソリューションを提供する。
計算コストは増大するが、モデルロバスト性を大幅に向上させ、プロセスを自動化するとともに、モデル開発における人間の関与の必要性を最小限にする。
関連論文リスト
- Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
本報告では, モデルロバスト性, 性能を向上させるため, 強化したトレーニング手法を提案する。
機械学習モデルの弱点を特定し、適切な拡張を選択し、効果的なトレーニング戦略を考案する包括的フレームワークを提案する。
実験結果は,オープンソースオブジェクトの検出とセマンティックセグメンテーションモデルとデータセットに対する平均平均精度(mAP)や平均距離(mIoU)といった一般的な測定値によって測定されるモデル性能の改善を示す。
論文 参考訳(メタデータ) (2024-08-30T14:15:48Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions [6.2719115566879236]
拡散モデル(DM)は画像データ拡張のための強力なツールとして登場した。
DMは、基礎となるデータ分布を学習することで、現実的で多様な画像を生成する。
この分野における現在の課題と今後の研究方向性について論じる。
論文 参考訳(メタデータ) (2024-07-04T18:06:48Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
データ拡張(Data augmentation)は、既存のデータサンプルを操作することによって高品質な人工データを生成する技術である。
既存の文献調査では、特定のモダリティデータにのみ焦点が当てられている。
本稿では,異なる共通データモダリティのためのデータ拡張技術を含む,より啓蒙的な分類法を提案する。
論文 参考訳(メタデータ) (2024-05-15T11:58:08Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
生成モデルは現実的なイメージの作成に優れていますが、トレーニングのための広範なデータセットに依存しているため、大きな課題があります。
現在のデータ効率の手法はGANアーキテクチャに重点を置いており、他の生成モデルの訓練にギャップを残している。
位相データ拡張(phased data augmentation)は、このギャップに対処する新しい手法であり、データ分散に固有の変更を加えることなく、限られたデータシナリオでのトレーニングを最適化する。
論文 参考訳(メタデータ) (2023-05-22T03:38:59Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
本稿では,事前学習したGANを効果的かつシームレスに拡張できる,エミュレーティブモデル推論と呼ばれる汎用フレームワークを提案する。
我々の基本的な考え方は、ワッサーシュタイン勾配流法を用いて与えられた要求に対する最適潜時分布を効率的に推算することである。
論文 参考訳(メタデータ) (2021-12-07T05:22:50Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Cross-Modal Generative Augmentation for Visual Question Answering [34.9601948665926]
本稿では,複数のモダリティ間の相関を利用したデータ拡張生成モデルを提案する。
提案したモデルは,生成確率によって拡張データの信頼度を定量化し,下流パイプラインと共同して更新することができる。
論文 参考訳(メタデータ) (2021-05-11T04:51:26Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。