論文の概要: Independently-Normalized SGD for Generalized-Smooth Nonconvex Optimization
- arxiv url: http://arxiv.org/abs/2410.14054v1
- Date: Thu, 17 Oct 2024 21:52:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:59.910654
- Title: Independently-Normalized SGD for Generalized-Smooth Nonconvex Optimization
- Title(参考訳): 一般化滑らかな非凸最適化のための独立Normalized SGD
- Authors: Yufeng Yang, Erin Tripp, Yifan Sun, Shaofeng Zou, Yi Zhou,
- Abstract要約: 我々は、多くの非機械学習問題が従来の非スムーズな非スムーズな状態を超えるような条件を満たすことを示した。
独立サンプリングと正規化を利用する独立正規化勾配降下アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 19.000530691874516
- License:
- Abstract: Recent studies have shown that many nonconvex machine learning problems meet a so-called generalized-smooth condition that extends beyond traditional smooth nonconvex optimization. However, the existing algorithms designed for generalized-smooth nonconvex optimization encounter significant limitations in both their design and convergence analysis. In this work, we first study deterministic generalized-smooth nonconvex optimization and analyze the convergence of normalized gradient descent under the generalized Polyak-Lojasiewicz condition. Our results provide a comprehensive understanding of the interplay between gradient normalization and function geometry. Then, for stochastic generalized-smooth nonconvex optimization, we propose an independently-normalized stochastic gradient descent algorithm, which leverages independent sampling, gradient normalization and clipping to achieve an $\mathcal{O}(\epsilon^{-4})$ sample complexity under relaxed assumptions. Experiments demonstrate the fast convergence of our algorithm.
- Abstract(参考訳): 最近の研究では、多くの非凸機械学習問題は、従来の滑らかな非凸最適化を超えて、いわゆる一般化スムース条件を満たすことが示されている。
しかし、一般化された滑らかな非凸最適化のために設計された既存のアルゴリズムは、設計と収束解析の両方において重大な制限に直面している。
本研究では, 一般化されたポリャク・ロジャシエヴィチ条件の下で, 決定論的一般化滑らかな非凸最適化を初めて研究し, 正規化勾配勾配の収束を解析した。
この結果は、勾配正規化と関数幾何学の相互作用の包括的理解を提供する。
そこで, 独立サンプリング, 勾配正規化, クリッピングを利用して, ゆるやかな仮定の下でサンプル複雑性を$\mathcal{O}(\epsilon^{-4})$とする, 独立正規化確率勾配降下アルゴリズムを提案する。
実験はアルゴリズムの高速収束を実証する。
関連論文リスト
- Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
凸法と非最適化法の分析は、しばしばリプシッツ勾配を必要とし、この軌道による解析を制限する。
最近の研究は、非一様滑らか性条件を通した勾配設定を一般化している。
論文 参考訳(メタデータ) (2023-06-02T04:21:59Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and
Nonsmooth Bi-level Optimization [26.68351521813062]
既存のバイレベルアルゴリズムは、非滑らかまたは超滑らかな正規化器を扱えない。
本稿では,包括的機械学習アプリケーションを高速化するために,暗黙差分法(AID)が有効であることを示す。
論文 参考訳(メタデータ) (2022-03-30T18:53:04Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - The computational asymptotics of Gaussian variational inference and the
Laplace approximation [19.366538729532856]
ガウス族との変分推論の凸性について理論的に解析する。
CSVIとCSVの両方の大規模実データにより、各最適化問題のグローバルな最適解が得られる可能性が向上することを示す。
論文 参考訳(メタデータ) (2021-04-13T01:23:34Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。