論文の概要: Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
- arxiv url: http://arxiv.org/abs/2410.14483v1
- Date: Fri, 18 Oct 2024 14:06:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:16.596087
- Title: Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
- Title(参考訳): ガウス過程による正確な因果不確実性定量のためのスペクトル表現法
- Authors: Hugh Dance, Peter Orbanz, Arthur Gretton,
- Abstract要約: ヒルベルト空間のスペクトル表現を通して制限に対処する手法IMPspecを導入する。
ヒルベルト空間回帰理論(英語版)において結果を拡張することにより、このモデルの後方が明示的に得られることを示す。
また、スペクトル表現を学習して後方校正を最適化する。
- 参考スコア(独自算出の注目度): 19.449942440902593
- License:
- Abstract: Accurate uncertainty quantification for causal effects is essential for robust decision making in complex systems, but remains challenging in non-parametric settings. One promising framework represents conditional distributions in a reproducing kernel Hilbert space and places Gaussian process priors on them to infer posteriors on causal effects, but requires restrictive nuclear dominant kernels and approximations that lead to unreliable uncertainty estimates. In this work, we introduce a method, IMPspec, that addresses these limitations via a spectral representation of the Hilbert space. We show that posteriors in this model can be obtained explicitly, by extending a result in Hilbert space regression theory. We also learn the spectral representation to optimise posterior calibration. Our method achieves state-of-the-art performance in uncertainty quantification and causal Bayesian optimisation across simulations and a healthcare application.
- Abstract(参考訳): 因果効果の正確な不確実性定量化は、複雑なシステムにおいて堅牢な意思決定には不可欠であるが、非パラメトリックな設定では依然として困難である。
1つの有望な枠組みは、再生された核ヒルベルト空間における条件分布を表し、ガウス過程の先行を因果効果に基づいて後続を推定するが、制限的な核支配的な核と信頼できない不確実性推定をもたらす近似を必要とする。
本研究では、ヒルベルト空間のスペクトル表現を通してこれらの制限に対処するIMPspec法を提案する。
ヒルベルト空間回帰理論(英語版)において結果を拡張することにより、このモデルの後方が明示的に得られることを示す。
また、スペクトル表現を学習して後方校正を最適化する。
本手法はシミュレーションと医療応用による不確実性定量化および因果ベイズ最適化における最先端性能を実現する。
関連論文リスト
- Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-06-20T15:07:37Z) - Provable convergence guarantees for black-box variational inference [19.421222110188605]
ブラックボックスの変分推論は、最適化が成功する証拠がない状況で広く使われている。
我々は,現実的な推論問題に実際に用いられている手法と同様の手法が収束するという厳密な保証を提供する。
論文 参考訳(メタデータ) (2023-06-04T11:31:41Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Statistical Inverse Problems in Hilbert Scales [0.0]
一般雑音を伴う非線形統計逆問題に対するヒルベルトスケールにおけるチコノフ正則化スキームについて検討する。
このスキームの正規化ノルムはヒルベルト空間のノルムよりも強い。
論文 参考訳(メタデータ) (2022-08-28T21:06:05Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
未知のハイパーパラメータを持つ設定において、ロバストなガウス過程の均一なエラー境界を導入する。
提案手法はハイパーパラメータの空間における信頼領域を計算し,モデル誤差に対する確率的上限を求める。
実験により、バニラ法やベイズ法よりもバニラ法の方がはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-09-06T17:10:01Z) - Bosonic field digitization for quantum computers [62.997667081978825]
我々は、離散化された場振幅ベースで格子ボゾン場の表現に対処する。
本稿では,エラースケーリングを予測し,効率的な量子ビット実装戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T15:30:04Z) - Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models [0.951828574518325]
予測誤差の最大値と最大値の上限を示す。
過剰な予測リスクの正確な上限は、非漸近的な形で示される。
モデルのKulback-Leibler分散の正則性仮定の下で、非漸近ミニマックス下界を導出する。
論文 参考訳(メタデータ) (2020-09-10T08:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。