論文の概要: JAMUN: Bridging Smoothed Molecular Dynamics and Score-Based Learning for Conformational Ensembles
- arxiv url: http://arxiv.org/abs/2410.14621v2
- Date: Mon, 21 Jul 2025 07:05:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 18:47:38.781394
- Title: JAMUN: Bridging Smoothed Molecular Dynamics and Score-Based Learning for Conformational Ensembles
- Title(参考訳): JAMUN: 構造的アンサンブルのための平滑な分子動力学とスコアベース学習
- Authors: Ameya Daigavane, Bodhi P. Vani, Darcy Davidson, Saeed Saremi, Joshua Rackers, Joseph Kleinhenz,
- Abstract要約: JAMUNは分子の全原子3D配座の滑らかでノイズの多い空間で分子動力学を行う。
これは、従来の分子動力学よりも桁違いの速度で小さなペプチドのアンサンブル生成を可能にする。
JAMUNの物理的先行性は、トレーニングデータ以外のシステムへの転送を可能にする。
- 参考スコア(独自算出の注目度): 2.1753610827474867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformational ensembles of protein structures are immensely important both for understanding protein function and drug discovery in novel modalities such as cryptic pockets. Current techniques for sampling ensembles such as molecular dynamics (MD) are computationally inefficient, while many recent machine learning methods do not transfer to systems outside their training data. We propose JAMUN which performs MD in a smoothed, noised space of all-atom 3D conformations of molecules by utilizing the framework of walk-jump sampling. JAMUN enables ensemble generation for small peptides at rates of an order of magnitude faster than traditional molecular dynamics. The physical priors in JAMUN enables transferability to systems outside of its training data, even to peptides that are longer than those originally trained on. Our model, code and weights are available at https://github.com/prescient-design/jamun.
- Abstract(参考訳): タンパク質構造のコンフォーマルアンサンブルは、タンパク質の機能と、秘密ポケットのような新しいモダリティにおける薬物発見を理解するために非常に重要である。
分子動力学(MD)のようなアンサンブルをサンプリングする現在の手法は計算的に非効率であるが、最近の機械学習手法の多くはトレーニングデータ以外のシステムに転送しない。
分子の全原子3Dコンフォメーションのスムーズなノイズ空間でMDを行うJAMUNについて,ウォークジャンプサンプリングの枠組みを用いて提案する。
JAMUNは、従来の分子動力学よりも桁違いの速度で小さなペプチドのアンサンブル生成を可能にする。
JAMUNの物理的先行性は、トレーニングデータ以外のシステムへの転送を可能にする。
私たちのモデル、コード、ウェイトはhttps://github.com/prescient-design/jamun.comで公開されています。
関連論文リスト
- UniSim: A Unified Simulator for Time-Coarsened Dynamics of Biomolecules [17.559471937824767]
我々は、ドメイン間知識を活用して原子間相互作用の理解を深める textbfUnified bfSimulator (UniSim) を提案する。
UniSimは、小さな分子、ペプチド、タンパク質間で高い競争力を発揮する。
論文 参考訳(メタデータ) (2025-05-20T14:29:06Z) - An All-Atom Generative Model for Designing Protein Complexes [49.09672038729524]
APM(All-Atom Protein Generative Model)は、マルチチェーンタンパク質をモデル化するためのモデルである。
原子レベルの情報を統合し、多鎖タンパク質のデータを活用することで、APMは鎖間相互作用を正確にモデル化し、結合能力を持つタンパク質複合体をゼロから設計することができる。
論文 参考訳(メタデータ) (2025-04-17T16:37:41Z) - Integrating Protein Dynamics into Structure-Based Drug Design via Full-Atom Stochastic Flows [29.49146207945794]
従来の構造に基づく薬物設計(SBDD)アプローチは、一般的に堅固な構造を持つ結合部位をターゲットにしている。
本稿では,タンパク質ポケットのコンフォメーション変化を考慮したSBDD生成モデルを提案する。
我々は,DynamicFlowがアポポケットやノイズポケットをホロポケットやそれに対応する3D分子に変換することを学習していることを示す。
論文 参考訳(メタデータ) (2025-03-06T00:34:44Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - EquiJump: Protein Dynamics Simulation via SO(3)-Equivariant Stochastic Interpolants [13.493198442811865]
EquiJumpは移動可能なSO(3)-同変モデルで、全原子タンパク質の動力学シミュレーションの時間ステップを直接ブリッジする。
提案手法は様々なサンプリング手法を達成し,高速な折りたたみタンパク質の軌道データに基づく既存のモデルと比較した。
論文 参考訳(メタデータ) (2024-10-12T23:22:49Z) - Loop-Diffusion: an equivariant diffusion model for designing and scoring protein loops [0.0]
ループ拡散(Loop-Diffusion)は、関数予測タスクに一般化するエネルギー関数を学ぶエネルギーベースの拡散モデルである。
我々は,TCR-pMHCインタフェースの評価におけるLoop-Diffusionの性能を評価し,結合強調突然変異の認識における最先端の結果を示す。
論文 参考訳(メタデータ) (2024-09-26T18:34:06Z) - Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides [17.559471937824767]
我々は、FBM(Force-Guided Bridge Matching)と呼ばれる条件付き生成モデルを提案する。
FBMはフル原子時間粗大化力学を学習し、ボルツマン制約分布を目標とする。
ペプチドからなる2つのデータセットの実験は、包括的メトリクスの観点から、我々の優位性を検証する。
論文 参考訳(メタデータ) (2024-08-27T15:07:27Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - AlphaFold Meets Flow Matching for Generating Protein Ensembles [11.1639408863378]
本研究では,タンパク質のコンフォメーション・ランドスケープを学習・サンプリングするためのフローベース生成モデリング手法を開発した。
提案手法はAlphaFoldとMSAサブサンプリングと比較して精度と多様性の組合せが優れている。
本手法は,MD軌道の再現よりも高速な壁面収束により,静的なPDB構造を多様化することができる。
論文 参考訳(メタデータ) (2024-02-07T13:44:47Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - ProFSA: Self-supervised Pocket Pretraining via Protein
Fragment-Surroundings Alignment [20.012210194899605]
本稿では,高分解能原子タンパク質構造からの知識を活用したポケット事前学習手法を提案する。
ProFSAと命名された本手法は,ポケットの薬剤性予測など,様々なタスクにおける最先端性能を実現する。
我々の研究は、高品質で多様なタンパク質構造データベースを活用することにより、タンパク質-リガンド複合体データの不足を軽減するための新たな道を開く。
論文 参考訳(メタデータ) (2023-10-11T06:36:23Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - MD-GAN with multi-particle input: the machine learning of long-time
molecular behavior from short-time MD data [1.3764085113103217]
MD-GANは、任意のタイミングでシステムの一部を進化させることができる機械学習ベースの手法である。
MD-GANの正確な予測には、システムの一部のダイナミクスに関する情報をトレーニングデータに含める必要がある。
ポリエチレン系実験において, 各分子の3つの粒子の動的挙動を用いた場合, 拡散はトレーニングデータの3分の1の時間長で予測できた。
論文 参考訳(メタデータ) (2022-02-02T12:29:13Z) - Accelerated Simulations of Molecular Systems through Learning of their
Effective Dynamics [4.276697874428501]
本稿では,最大3桁のシミュレーションを行うための新しい枠組みを提案する。
ledは分子系の効果的なダイナミクスを学ぶ。
我々は、M"ueller-Brown電位、Trp Cageタンパク質、およびアラニンジペプチドにおけるLEDの有効性を実証する。
論文 参考訳(メタデータ) (2021-02-17T15:15:37Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。