論文の概要: A Phenomenological AI Foundation Model for Physical Signals
- arxiv url: http://arxiv.org/abs/2410.14724v1
- Date: Tue, 15 Oct 2024 21:03:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:33.496893
- Title: A Phenomenological AI Foundation Model for Physical Signals
- Title(参考訳): 物理信号のための現象AI基礎モデル
- Authors: Jaime Lien, Laura I. Galindez Olascoaga, Hasan Dogan, Nicholas Gillian, Brandon Barbello, Leonardo Giusti, Ivan Poupyrev,
- Abstract要約: 我々は0.59億のクロスモーダルセンサ測定のモデルを開発し、訓練する。
物理法則や帰納バイアスに関する事前の知識はモデルに導入されなかった。
一つの基礎モデルが物理的挙動を効果的にエンコードし予測できることを実証する。
- 参考スコア(独自算出の注目度): 1.204553980682492
- License:
- Abstract: The objective of this work is to develop an AI foundation model for physical signals that can generalize across diverse phenomena, domains, applications, and sensing apparatuses. We propose a phenomenological approach and framework for creating and validating such AI foundation models. Based on this framework, we developed and trained a model on 0.59 billion samples of cross-modal sensor measurements, ranging from electrical current to fluid flow to optical sensors. Notably, no prior knowledge of physical laws or inductive biases were introduced into the model. Through several real-world experiments, we demonstrate that a single foundation model could effectively encode and predict physical behaviors, such as mechanical motion and thermodynamics, including phenomena not seen in training. The model also scales across physical processes of varying complexity, from tracking the trajectory of a simple spring-mass system to forecasting large electrical grid dynamics. This work highlights the potential of building a unified AI foundation model for diverse physical world processes.
- Abstract(参考訳): この研究の目的は、様々な現象、領域、応用、センシング機器をまたいで一般化できる物理信号のためのAI基盤モデルを開発することである。
本稿では,このようなAI基盤モデルの作成と検証のための現象学的アプローチとフレームワークを提案する。
この枠組みに基づいて、電気電流から流体の流れ、光学センサーまで、59億のクロスモーダルセンサ測定のモデルを開発し、訓練した。
特に、物理法則や帰納バイアスに関する事前の知識はモデルに導入されなかった。
いくつかの実世界の実験を通して、単一の基礎モデルが、トレーニングで見られない現象を含む機械運動や熱力学などの物理的挙動を効果的にエンコードし、予測できることを実証した。
このモデルは、単純なバネ質量系の軌跡の追跡から、大きな電力グリッドのダイナミクスの予測まで、様々な複雑さの物理的プロセスにわたってスケールする。
この研究は、多様な物理世界プロセスのための統合AI基盤モデルを構築する可能性を強調している。
関連論文リスト
- ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhyは、マシン物理常識を評価するための新しいベンチマークである。
私たちは、さまざまなAIモデルを評価し、ContPhyで満足なパフォーマンスを達成するのに依然として苦労していることがわかった。
また、近年の大規模言語モデルとパーティクルベースの物理力学モデルを組み合わせるためのオラクルモデル(ContPRO)を導入する。
論文 参考訳(メタデータ) (2024-02-09T01:09:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Learning to Simulate Unseen Physical Systems with Graph Neural Networks [13.202870928432045]
グラフベース物理エンジン(Graph-based Physics Engine)は,物理先行パラメータと物質パラメータを組み込んだ機械学習手法である。
我々は、GPEがトレーニングセットにない異なる特性を持つ材料に一般化できることを実証した。
さらに、モデルに運動量保存の法則を導入することにより、学習の効率性と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2022-01-28T07:56:46Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。