A Computational Harmonic Detection Algorithm to Detect Data Leakage through EM Emanation
- URL: http://arxiv.org/abs/2410.16316v1
- Date: Wed, 09 Oct 2024 14:40:15 GMT
- Title: A Computational Harmonic Detection Algorithm to Detect Data Leakage through EM Emanation
- Authors: Md Faizul Bari, Meghna Roy Chowdhury, Shreyas Sen,
- Abstract summary: Unintended electromagnetic emissions from electronic devices, known as EM emanations, pose significant security risks.
Defense organizations typically use metal shielding to prevent data leakage, but this approach is costly and impractical for widespread use.
We propose a harmonic-based detection method by developing a computational harmonic detector.
- Score: 0.08192907805418582
- License:
- Abstract: Unintended electromagnetic emissions from electronic devices, known as EM emanations, pose significant security risks because they can be processed to recover the source signal's information content. Defense organizations typically use metal shielding to prevent data leakage, but this approach is costly and impractical for widespread use, especially in uncontrolled environments like government facilities in the wild. This is particularly relevant for IoT devices due to their large numbers and deployment in varied environments. This gives rise to a research need for an automated emanation detection method to monitor the facilities and take prompt steps when leakage is detected. To address this, in the preliminary version of this work [1], we collected emanation data from 3 types of HDMI cables and proposed a CNN-based detection method that provided 95% accuracy up to 22.5m. However, the CNN-based method has some limitations: hardware dependency, confusion among multiple sources, and struggle at low SNR. In this extended version, we augment the initial study by collecting emanation data from IoT devices, everyday electronic devices, and cables. Data analysis reveals that each device's emanation has a unique harmonic pattern with intermodulation products, in contrast to communication signals with fixed frequency bands, spectra, and modulation patterns. Leveraging this, we propose a harmonic-based detection method by developing a computational harmonic detector. The proposed method addresses the limitations of the CNN method and provides ~100 accuracy not only for HDMI emanation (compared to 95% in the earlier CNN-based method) but also for all other tested devices/cables in different environments.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
We propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels.
In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM)
arXiv Detail & Related papers (2022-01-26T03:34:57Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z) - Iterative Correction of Sensor Degradation and a Bayesian Multi-Sensor
Data Fusion Method [0.0]
We present a novel method for inferring ground-truth signal from degraded signals.
The algorithm learns a multiplicative degradation effect by performing iterative corrections of two signals.
We include theoretical analysis and prove convergence to the ground-truth signal for the noiseless measurement model.
arXiv Detail & Related papers (2020-09-07T13:24:47Z) - Anomaly Detection in Unsupervised Surveillance Setting Using Ensemble of
Multimodal Data with Adversarial Defense [0.3867363075280543]
In this paper, an ensemble detection mechanism is proposed which estimates the degree of abnormality of analyzing the real-time image and IMU (Inertial Measurement Unit) sensor data.
The proposed method performs satisfactorily on the IEEE SP Cup-2020 dataset with an accuracy of 97.8%.
arXiv Detail & Related papers (2020-07-17T20:03:02Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.