論文の概要: Integrating Window-Based Correlated Decoding with Constant-Time Logical Gates for Large-Scale Quantum Computation
- arxiv url: http://arxiv.org/abs/2410.16963v1
- Date: Tue, 22 Oct 2024 12:44:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:28.364099
- Title: Integrating Window-Based Correlated Decoding with Constant-Time Logical Gates for Large-Scale Quantum Computation
- Title(参考訳): 大規模量子計算のための一定時間論理ゲートによるウィンドウベース関連デコードの統合
- Authors: Jiaxuan Zhang, Zhao-Yun Chen, Jia-Ning Li, Tian-Hao Wei, Huan-Yu Liu, Xi-Ning Zhuang, Qing-Song Li, Yu-Chun Wu, Guo-Ping Guo,
- Abstract要約: フォールトトレラント量子コンピューティングの重要な問題のひとつは、ゲートの実装のオーバーヘッドを減らすことである。
近年提案された相関復号化とアルゴリズム的フォールトトレランスは高速な普遍性ゲートを実現する。
このアプローチは、大規模な回路を扱うための自然な要求であるウィンドウベースの復号法とは相容れない。
- 参考スコア(独自算出の注目度): 11.657137510701165
- License:
- Abstract: Large-scale quantum computation requires to be performed in the fault-tolerant manner. One crucial issue of fault-tolerant quantum computing (FTQC) is reducing the overhead of implementing logical gates. Recently proposed correlated decoding and ``algorithmic fault tolerance" achieve fast logical gates that enables universal quantum computation. However, for circuits involving mid-circuit measurements and feedback, this approach is incompatible with window-based decoding, which is a natural requirement for handling large-scale circuits. In this letter, we propose an alternative architecture that employs delayed fixup circuits, integrating window-based correlated decoding with fast transversal gates. This design significantly reduce both the frequency and duration of correlated decoding, while maintaining support for constant-time logical gates and universality across a broad class of quantum codes. More importantly, by spatial parallelism of windows, this architecture well adapts to time-optimal FTQC, making it particularly useful for large-scale computation. Using Shor's algorithm as an example, we explore the application of our architecture and reveals the promising potential of using fast transversal gates to perform large-scale quantum computing tasks with acceptable overhead on physical systems like ion traps.
- Abstract(参考訳): 大規模量子計算は、フォールトトレラントな方法で行う必要がある。
フォールトトレラント量子コンピューティング(FTQC)の重要な問題のひとつは、論理ゲートの実装のオーバーヘッドを減らすことである。
最近提案された相関復号法と 'algorithmic fault tolerance' は、普遍的な量子計算を可能にする高速論理ゲートを実現する。
しかし、中回路計測やフィードバックを含む回路では、大規模な回路を扱うための自然な要求であるウィンドウベースのデコーディングとは相容れない。
本稿では,ウィンドウベースの相関デコーディングを高速なトランスバーサルゲートと組み合わせ,遅延固定回路を用いた代替アーキテクチャを提案する。
この設計により、相関復号の周波数と持続時間の両方が大幅に減少し、幅広い種類の量子符号をまたいだ定数時間論理ゲートと普遍性のサポートを維持した。
さらに、ウィンドウの空間並列性により、このアーキテクチャは時間最適化FTQCによく適応し、大規模計算に特に有用である。
Shorのアルゴリズムを例として、アーキテクチャの適用を探求し、高速なトランスバースゲートを使用して、イオントラップのような物理システムに許容されるオーバーヘッドで大規模量子コンピューティングタスクを実行する、有望な可能性を明らかにする。
関連論文リスト
- Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
フォールトトレラント量子計算における大きな課題は、空間オーバーヘッドと時間オーバーヘッドの両方を削減することである。
本研究では, 量子低密度パリティチェック符号を用いたプロトコルが, 一定の空間オーバーヘッドと多対数時間オーバーヘッドを実現することを示す。
論文 参考訳(メタデータ) (2024-11-06T06:06:36Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
スイッチングゲートのみを用いることで、FT回路設計の制約を尊重するコードスキームを提案する。
我々は、既存の量子プロセッサの動作に適した低距離カラーコードへのスキームの適用を解析する。
論理的補助量子ビットが十分に確実に準備できることを前提として、このスキームを大規模な並列化でどのように実装できるかを論じる。
論文 参考訳(メタデータ) (2024-09-20T12:54:47Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - An Architecture for Improved Surface Code Connectivity in Neutral Atoms [3.3186866268167146]
我々は、中性原子配列からなる量子コンピュータに対処し、ハードウェアの物理的接続をより高い論理接続に変換する表面コードアーキテクチャを設計する。
通常の格子手術と比較すると、これは量子ビット全体のフットプリントと実行時間を削減し、小型のQEC回路に必要な時空オーバーヘッドを低減させる。
本稿では, 物理原子移動方式を用いて, 近接する葉柄群における量子ビット間の全接続を可能とし, 大規模回路に対して高い接続ルーティング空間を創出する, 層間格子手術を提案する。
論文 参考訳(メタデータ) (2023-09-24T00:10:47Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
本稿では,プラットフォームに依存しない論理ゲート定義の必要性から,普遍的なフォールトトレラント論理の枠組みを提案する。
資源オーバーヘッドを改善するユニバーサル論理の新しいスキームについて検討する。
境界のない計算に好適な論理誤差率を動機として,新しい計算手法を提案する。
論文 参考訳(メタデータ) (2021-12-22T19:00:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。