Multi-modal Machine Learning Analysis of X-ray Absorption Near-Edge Spectra and Pair Distribution Functions: Performance and Interpretability towards Experimental Design
- URL: http://arxiv.org/abs/2410.17467v1
- Date: Tue, 22 Oct 2024 22:49:31 GMT
- Title: Multi-modal Machine Learning Analysis of X-ray Absorption Near-Edge Spectra and Pair Distribution Functions: Performance and Interpretability towards Experimental Design
- Authors: Tanaporn Na Narong, Zoe N. Zachko, Steven B. Torrisi, Simon J. L. Billinge,
- Abstract summary: We combine information from X-ray absorption near-edge spectra (XANES) and atomic pair distribution functions (PDFs) to extract information about local structure and chemistry of transition metal oxides.
Specifically, we trained random forest models on XANES, PDF, and both of them combined, to extract charge (oxidation) state, coordination number, and mean nearest-neighbor bond length of transition metal cations in oxides.
We find that XANES-only models tend to outperform the PDF-only models for all the tasks, and information from XANES often dominated when the two inputs were combined
- Score: 0.0
- License:
- Abstract: We used off-the-shelf interpretable ML techniques to combine information from multiple heterogeneous spectra: X-ray absorption near-edge spectra (XANES) and atomic pair distribution functions (PDFs), to extract information about local structure and chemistry of transition metal oxides. This approach enabled us to analyze the relative contributions of the different spectra to different prediction tasks. Specifically, we trained random forest models on XANES, PDF, and both of them combined, to extract charge (oxidation) state, coordination number, and mean nearest-neighbor bond length of transition metal cations in oxides. We find that XANES-only models tend to outperform the PDF-only models for all the tasks, and information from XANES often dominated when the two inputs were combined. This was even true for structural tasks where we might expect PDF to dominate. However, the performance gap closes when we used species-specific differential PDFs (dPDFs) as the inputs instead of total PDFs. Our results highlight that XANES contains rich structural information and may be further developed as a structural probe. Our interpretable, multimodal approach is quick and easy to implement when suitable structural and spectroscopic databases are available. This approach provides valuable insights into the relative strengths of different modalities for a practical scientific goal, guiding researchers in their experiment design tasks such as deciding when it is useful to combine complementary techniques in a scientific investigation.
Related papers
- A Universal Deep Learning Framework for Materials X-ray Absorption Spectra [0.6291443816903801]
X-ray absorption spectroscopy (XAS) is a powerful characterization technique for probing the local chemical environment of absorbing atoms.
However, analyzing XAS data presents with significant challenges, often requiring extensive, computationally intensive simulations.
We develop a suite of transfer learning approaches for XAS prediction, each uniquely contributing to improved accuracy and efficiency.
arXiv Detail & Related papers (2024-09-29T04:41:10Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Universal Spectral Transfer with Physical Prior-Informed Deep Generative Learning [9.603403541272746]
We introduce SpectroGen, a novel physical prior-informed deep generative model for generating relevant spectral signatures.
Results show generating with 99% correlation and 0.01 root mean square error with superior resolution than experimentally acquired ground truth spectra.
arXiv Detail & Related papers (2024-07-22T23:31:10Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - Robust retrieval of material chemical states in X-ray microspectroscopy [10.621361408885765]
We propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem.
Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions.
arXiv Detail & Related papers (2023-08-08T12:17:02Z) - Decoding Structure-Spectrum Relationships with Physically Organized
Latent Spaces [6.36075035468233]
A new semi-supervised machine learning method for the discovery of structure-spectrum relationships is developed and demonstrated.
This method constructs a one-to-one mapping between individual structure descriptors and spectral trends.
The RankAAE methodology produces a continuous and interpretable latent space, where each dimension can track an individual structure descriptor.
arXiv Detail & Related papers (2023-01-11T21:30:22Z) - A probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra [4.240899165468488]
We develop an ensemble convolutional neural network trained on simulated diffraction spectra to identify complex multi-phase mixtures.
Our model is benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional performance with accuracies exceeding those given by previously reported methods.
arXiv Detail & Related papers (2021-03-30T20:13:01Z) - Alchemy: A structured task distribution for meta-reinforcement learning [52.75769317355963]
We introduce a new benchmark for meta-RL research, which combines structural richness with structural transparency.
Alchemy is a 3D video game, which involves a latent causal structure that is resampled procedurally from episode to episode.
We evaluate a pair of powerful RL agents on Alchemy and present an in-depth analysis of one of these agents.
arXiv Detail & Related papers (2021-02-04T23:40:44Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data.
MVPA works best with a well-designed feature set and an adequate sample size.
Most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes.
This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning approach.
arXiv Detail & Related papers (2020-10-24T08:50:26Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
arXiv Detail & Related papers (2020-09-11T05:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.