1D Spontaneous Symmetry Breaking in thermal equilibrium via Non-Hermitian Construction
- URL: http://arxiv.org/abs/2410.19052v2
- Date: Wed, 04 Jun 2025 12:43:59 GMT
- Title: 1D Spontaneous Symmetry Breaking in thermal equilibrium via Non-Hermitian Construction
- Authors: Jia-Bao Wang, Zi-Hao Dong, Yi Zhang,
- Abstract summary: Spontaneous symmetry breaking generally circumvents one-dimensional systems with local interactions in thermal equilibrium.<n>We analyze a category of one-dimensional Hermitian models via local non-Hermitian constructions.
- Score: 8.232937862096508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spontaneous symmetry breaking generally circumvents one-dimensional systems with local interactions in thermal equilibrium. Here, we analyze a category of one-dimensional Hermitian models via local non-Hermitian constructions. Notably, spontaneous symmetry breaking and long-range order may emerge at finite temperatures in such systems under periodic boundary conditions, in sharp contrast to Hermitian constructions. We demonstrate clear numerical evidence, such as order parameters and specific heat, supporting phase diagrams with robust ordered phases. Non-Hermitian physics plays a vital role in prohibiting domain-wall proliferation and promoting spontaneous symmetry breaking. The fermions exhibit an exotic topological nature in their path-integral windings, which uphold nonzero integers -- commonly a non-Hermitian signature -- in the ordered phases, thus offering a novel and spontaneous origin for both symmetry breaking and non-Hermiticity.
Related papers
- Quantum thermalization mechanism and the emergence of symmetry-breaking phases [0.0]
We propose a generalization of the eigenstate thermalization hypothesis accounting for the emergence of symmetry-breaking phases.<n>We explore the applicability of this formalism by means of numerical experiments on a three-site Bose-Hubbard model with two non-commuting discrete symmetries.
arXiv Detail & Related papers (2025-06-16T11:24:33Z) - Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.
We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - The non-Abelian geometry, topology, and dynamics of a nonreciprocal Su-Schrieffer-Heeger ladder [0.7373617024876725]
We study how the non-Abelian geometry, topology, and dynamics emerge in a multi-band, non-Hermitian ladder model.
Our work may stimulate more focuses on the non-Abelian properties of the non-Hermitian/open quantum systems.
arXiv Detail & Related papers (2025-02-07T12:49:36Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.
We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Long-range entanglement from spontaneous non-onsite symmetry breaking [3.3754780158324564]
We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
arXiv Detail & Related papers (2024-11-07T18:59:51Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Emergent symmetries in prethermal phases of periodically driven quantum systems [0.0]
Periodically driven closed quantum systems are expected to eventually heat up to infinite temperature reaching a steady state.
However, their properties in long prethermal regimes are qualitatively different from that in their infinite temperature steady states.
These, often experimentally relevant, prethermal regimes host a wide range of phenomena.
They may exhibit dynamical localization and freezing, host Floquet scars, display signatures of Hilbert space fragmentation, and exhibit time crystalline phases.
arXiv Detail & Related papers (2024-07-30T12:08:31Z) - Many-body physics of spontaneously broken higher-rank symmetry: from
fractonic superfluids to dipolar Hubbard model [3.7643633034408404]
Fractonic superfluids are exotic phases of matter in which bosons are subject to mobility constraints.
This paper introduces exciting developments on the theory of spontaneous symmetry breaking in such systems.
arXiv Detail & Related papers (2023-05-01T16:53:14Z) - Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides [0.0]
In symmetry-protected topological systems, symmetries are responsible for protecting surface states.
By engineering losses that break the symmetry protecting a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges.
We classify the systems in terms of the (non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
arXiv Detail & Related papers (2023-04-12T10:05:02Z) - Phase transitions as a manifestation of spontaneous unitarity violation [0.0]
We argue that singling out a global choice for the ordered state is in fact forbidden under unitary time evolution.
We argue that the observation of phase transitions in our everyday world presents a manifestation of the unitarity of quantum dynamics itself being spontaneously broken.
arXiv Detail & Related papers (2022-09-09T12:32:13Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Observation of Hermitian and Non-Hermitian Diabolic Points and
Exceptional Rings in Parity-Time symmetric ZRC and RLC Dimers [62.997667081978825]
We show how appears non-Hermitian degeneracy points in the spectrum and how they are protected against a Hermitian perturbation.
This work opens a gold road for investigations on topological electrical circuits for robust transport of information at room temperature.
arXiv Detail & Related papers (2020-04-17T15:51:49Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.