Prediction of microstructural representativity from a single image
- URL: http://arxiv.org/abs/2410.19568v1
- Date: Fri, 25 Oct 2024 13:59:22 GMT
- Title: Prediction of microstructural representativity from a single image
- Authors: Amir Dahari, Ronan Docherty, Steve Kench, Samuel J. Cooper,
- Abstract summary: We present a method for predicting the representativity of the phase fraction observed in a single image (2D or 3D) of a material.
Our method leverages the Two-Point Correlation function to directly estimate the variance from a single image (2D or 3D)
- Score: 0.0
- License:
- Abstract: In this study, we present a method for predicting the representativity of the phase fraction observed in a single image (2D or 3D) of a material. Traditional approaches often require large datasets and extensive statistical analysis to estimate the Integral Range, a key factor in determining the variance of microstructural properties. Our method leverages the Two-Point Correlation function to directly estimate the variance from a single image (2D or 3D), thereby enabling phase fraction prediction with associated confidence levels. We validate our approach using open-source datasets, demonstrating its efficacy across diverse microstructures. This technique significantly reduces the data requirements for representativity analysis, providing a practical tool for material scientists and engineers working with limited microstructural data. To make the method easily accessible, we have created a web-application, \url{www.imagerep.io}, for quick, simple and informative use of the method.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Sparse Bayesian Multidimensional Item Response Theory [0.0]
We develop a Bayesian platform for binary and ordinal item MIRT which requires minimal tuning and scales well on large datasets.
We address the seemingly insurmountable problem of unknown latent factor dimensionality with tools from Bayesian nonparametrics.
Our method reliably recovers both the factor dimensionality as well as the latent structure on high-dimensional synthetic data even for small samples.
arXiv Detail & Related papers (2023-10-26T23:50:50Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
Diffusion-based generative models have achieved promising results recently, but raise an array of open questions.
This work tries to re-exam the overall framework in order to gain better theoretical understandings.
We present 1) a first theoretical error analysis for learning diffusion generation models, and 2) a simple and unified approach to learning on data from different discrete and constrained domains.
arXiv Detail & Related papers (2022-08-31T08:58:10Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Data-Driven Learning of 3-Point Correlation Functions as Microstructure
Representations [8.978973486638253]
We show that a variety of microstructures can be characterized by a concise subset of three-point correlations.
The proposed representation can directly be used to compute material properties based on the effective medium theory.
arXiv Detail & Related papers (2021-09-06T06:15:57Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
We introduce a conceptually simple yet effective model for self-supervised representation learning with graph data.
We optimize an innovative feature-level objective inspired by classical Canonical Correlation Analysis.
Our method performs competitively on seven public graph datasets.
arXiv Detail & Related papers (2021-06-23T15:55:47Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
We introduce a multi-frame monocular scene flow network based on self-supervised learning.
We observe state-of-the-art accuracy among monocular scene flow methods based on self-supervised learning.
arXiv Detail & Related papers (2021-05-05T17:49:55Z) - Learning an Interpretable Graph Structure in Multi-Task Learning [18.293397644865454]
We present a novel methodology to jointly perform multi-task learning and infer intrinsic relationship among tasks by an interpretable and sparse graph.
Our graph is learned simultaneously with model parameters of each task, thus it reflects the critical relationship among tasks in the specific prediction problem.
arXiv Detail & Related papers (2020-09-11T18:58:14Z) - Image-driven discriminative and generative machine learning algorithms
for establishing microstructure-processing relationships [0.49259062564301753]
We develop an improved machine learning approach to image recognition, characterization, and building predictive capabilities.
A binary alloy (uranium-molybdenum) that is currently under development as a nuclear fuel was studied.
A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material processing conditions.
arXiv Detail & Related papers (2020-07-27T10:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.