論文の概要: Neural Hamilton: Can A.I. Understand Hamiltonian Mechanics?
- arxiv url: http://arxiv.org/abs/2410.20951v1
- Date: Mon, 28 Oct 2024 12:10:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:18.262685
- Title: Neural Hamilton: Can A.I. Understand Hamiltonian Mechanics?
- Title(参考訳): Neural Hamilton: A.I.はハミルトン力学を理解できますか?
- Authors: Tae-Geun Kim, Seong Chan Park,
- Abstract要約: 本稿では,古典力学を演算子学習問題として再構成するニューラルネットワークに基づく新しいフレームワークを提案する。
機械はハミルトン方程式を解くことなく、位相空間におけるポテンシャル関数とその対応する軌道に直接写像する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a novel framework based on neural network that reformulates classical mechanics as an operator learning problem. A machine directly maps a potential function to its corresponding trajectory in phase space without solving the Hamilton equations. Most notably, while conventional methods tend to accumulate errors over time through iterative time integration, our approach prevents error propagation. Two newly developed neural network architectures, namely VaRONet and MambONet, are introduced to adapt the Variational LSTM sequence-to-sequence model and leverage the Mamba model for efficient temporal dynamics processing. We tested our approach with various 1D physics problems: harmonic oscillation, double-well potentials, Morse potential, and other potential models outside the training data. Compared to traditional numerical methods based on the fourth-order Runge-Kutta (RK4) algorithm, our model demonstrates improved computational efficiency and accuracy. Code is available at: https://github.com/Axect/Neural_Hamilton
- Abstract(参考訳): 本稿では,古典力学を演算子学習問題として再構成するニューラルネットワークに基づく新しいフレームワークを提案する。
機械はハミルトン方程式を解くことなく、位相空間におけるポテンシャル関数とその対応する軌道に直接写像する。
最も注目すべきは、従来の手法は反復的な時間統合によって時間とともにエラーを蓄積する傾向にあるが、我々の手法はエラーの伝播を防ぐ。
VaRONetとMambONetという2つの新しいニューラルネットワークアーキテクチャを導入し、変動型LSTMシーケンス・ツー・シーケンスモデルを適用し、Mambaモデルを効率的な時間動的処理に利用した。
我々は、ハーモニック振動、ダブルウェルポテンシャル、モースポテンシャル、およびトレーニングデータ以外のポテンシャルモデルなど、様々な1次元物理問題を用いてアプローチを検証した。
4次ランゲ・クッタ法(RK4)に基づく従来の数値計算法と比較して,計算効率と精度が向上した。
コードは、https://github.com/Axect/Neural_Hamiltonで入手できる。
関連論文リスト
- Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - On the balance between the training time and interpretability of neural
ODE for time series modelling [77.34726150561087]
本稿は,現代のニューラルODEを,時系列モデリングアプリケーションのためのより単純なモデルに還元することはできないことを示す。
ニューラルODEの複雑さは、従来の時系列モデリングツールと比較されるか、超える。
本稿では,ニューラルネットワークとODEシステムを用いた時系列モデリングの新しい視点を提案する。
論文 参考訳(メタデータ) (2022-06-07T13:49:40Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - Symplectic Learning for Hamiltonian Neural Networks [0.0]
Hamiltonian Neural Networks (HNN)は、統一された"グレーボックス"アプローチに向けた第一歩を踏み出した。
損失関数が異なるハミルトン系のシンプレクティック構造を利用する。
HNNが学習できる正確なハミルトン関数の存在を数学的に保証する。
論文 参考訳(メタデータ) (2021-06-22T13:33:12Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
SSINN(Sprselectically Integrated Neural Networks)を紹介する。
SSINNはデータからハミルトン力学系を学ぶための新しいモデルである。
古典的ハミルトン力学問題に対するSSINNの評価を行う。
論文 参考訳(メタデータ) (2020-06-10T03:33:37Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Hamiltonian Simulation Algorithms for Near-Term Quantum Hardware [6.445605125467574]
我々は、ハミルトニアンシミュレーションのための量子アルゴリズムを「回路モデルより1レベル下」に開発する。
我々は、これらのテクニックが標準エラーモデルで与える影響を分析します。
2量子相互作用からマルチキュービット進化を効率的に合成するための解析回路のアイデンティティーを導出する。
論文 参考訳(メタデータ) (2020-03-15T18:22:02Z) - Hamiltonian neural networks for solving equations of motion [3.1498833540989413]
本稿では,力学系を支配する微分方程式を解くハミルトニアンニューラルネットワークを提案する。
シンプレクティックオイラー積分器は、数値誤差の同じ順序を達成するために、ハミルトンネットワークよりも2桁多くの評価点を必要とする。
論文 参考訳(メタデータ) (2020-01-29T21:48:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。