論文の概要: Physics-informed Partitioned Coupled Neural Operator for Complex Networks
- arxiv url: http://arxiv.org/abs/2410.21025v1
- Date: Mon, 28 Oct 2024 13:46:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:15.432670
- Title: Physics-informed Partitioned Coupled Neural Operator for Complex Networks
- Title(参考訳): 複雑なネットワークのための物理インフォームド分割結合型ニューラル演算子
- Authors: Weidong Wu, Yong Zhang, Lili Hao, Yang Chen, Xiaoyan Sun, Dunwei Gong,
- Abstract要約: 本稿では,これらのネットワークのシミュレーション性能を向上させるために,物理インフォームド分割結合型ニューラル演算子(PCNO)を提案する。
既存のフーリエニューラル演算子(FNO)と比較して、この手法はフーリエ層内の合同畳み込み演算子を設計し、すべてのサブリージョンを捕捉するグローバルな統合を可能にする。
ガスネットワークの実験により、提案した演算子は複雑なシステムを正確にシミュレートするだけでなく、優れた一般化と低モデルの複雑さも示している。
- 参考スコア(独自算出の注目度): 12.1877474098537
- License:
- Abstract: Physics-Informed Neural Operators provide efficient, high-fidelity simulations for systems governed by partial differential equations (PDEs). However, most existing studies focus only on multi-scale, multi-physics systems within a single spatial region, neglecting the case with multiple interconnected sub-regions, such as gas and thermal systems. To address this, this paper proposes a Physics-Informed Partitioned Coupled Neural Operator (PCNO) to enhance the simulation performance of such networks. Compared to the existing Fourier Neural Operator (FNO), this method designs a joint convolution operator within the Fourier layer, enabling global integration capturing all sub-regions. Additionally, grid alignment layers are introduced outside the Fourier layer to help the joint convolution operator accurately learn the coupling relationship between sub-regions in the frequency domain. Experiments on gas networks demonstrate that the proposed operator not only accurately simulates complex systems but also shows good generalization and low model complexity.
- Abstract(参考訳): 物理インフォームドニューラルネットワークは、偏微分方程式(PDE)によって支配されるシステムに対して、効率的で高忠実なシミュレーションを提供する。
しかし、既存のほとんどの研究は、ガスや熱システムのような複数の相互接続されたサブリージョンの場合を無視し、単一の空間領域内のマルチスケールの多物理系のみに焦点を当てている。
そこで本研究では,これらのネットワークのシミュレーション性能を向上させるために,物理インフォームド・パーティショルド結合ニューラル演算子(PCNO)を提案する。
既存のフーリエニューラル演算子(FNO)と比較して、この手法はフーリエ層内の合同畳み込み演算子を設計し、すべてのサブリージョンを捕捉するグローバルな統合を可能にする。
さらに、フーリエ層外にグリッドアライメント層を導入し、結合畳み込み演算子が周波数領域のサブリージョン間の結合関係を正確に学習できるようにする。
ガスネットワークの実験により、提案した演算子は複雑なシステムを正確にシミュレートするだけでなく、優れた一般化と低モデルの複雑さも示している。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-embedded Fourier Neural Network for Partial Differential Equations [35.41134465442465]
物理埋め込みフーリエニューラルネット(PeFNN)を柔軟かつ説明可能な誤差で導入する。
PeFNNは運動量保存を強制し、解釈可能な非線形表現を得るように設計されている。
我々は,大規模な洪水シミュレーションのような実世界のアプリケーションに挑戦する上で,その優れた性能を実証する。
論文 参考訳(メタデータ) (2024-07-15T18:30:39Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators [12.165876595927452]
ユニバーサル物理変換器(Universal Physics Transformer、UPT)は、幅広い問題に対して効率的かつ統一的な学習パラダイムである。
UPTはグリッドやパーティクルベースの潜在メッシュを使わずに動作し、構造や粒子間の柔軟性を実現する。
メッシュ型流体シミュレーションおよび定常レイノルズ平均Navier-StokesシミュレーションにおけるUTTの適用性と有効性を示した。
論文 参考訳(メタデータ) (2024-02-19T18:52:13Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
本稿では、部分微分方程式(PDE)演算子を近似するディープニューラルネットワークアーキテクチャであるGIT-Netを紹介する。
GIT-Netは、PDEを定義するためによく使われる微分作用素が、特殊機能基底で表現されるときに、しばしば同義的に表現されるという事実を利用する。
数値実験により、GIT-Netは競争力のあるニューラルネットワーク演算子であり、様々なPDE問題に対して小さなテストエラーと低い評価を示すことが示された。
論文 参考訳(メタデータ) (2023-12-05T03:03:54Z) - Enhancing Solutions for Complex PDEs: Introducing Complementary Convolution and Equivariant Attention in Fourier Neural Operators [17.91230192726962]
複雑なPDEを解くために,畳み込み-残留層と注意機構を備えた新しい階層型フーリエニューラル演算子を提案する。
提案手法はこれらのPDEベンチマークにおいて,特に高速な係数変動を特徴とする方程式に対して,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-11-21T11:04:13Z) - CoNO: Complex Neural Operator for Continuous Dynamical Systems [10.326780211731263]
複素分数フーリエ領域の積分核をパラメータ化する複素ニューラル演算子(CoNO)を導入する。
このモデルは, 1つの複素分数フーリエ変換を用いて, 基礎となる偏微分方程式を効果的に捕捉することを示す。
論文 参考訳(メタデータ) (2023-10-03T14:38:12Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Factorized Fourier Neural Operators [77.47313102926017]
Factorized Fourier Neural Operator (F-FNO) は偏微分方程式をシミュレートする学習法である。
我々は,数値解法よりも桁違いに高速に動作しながら,誤差率2%を維持していることを示す。
論文 参考訳(メタデータ) (2021-11-27T03:34:13Z) - Deep Neural Networks and PIDE discretizations [2.4063592468412276]
畳み込みニューラルネットワーク(CNN)の安定性と視野問題に対処するニューラルネットワークを提案する。
本稿では,大域重み付きラプラス作用素,分数ラプラス作用素,分数逆ラプラス作用素に関連する積分型空間非局所作用素を提案する。
自律運転における画像分類データセットとセマンティックセグメンテーションタスクのベンチマーク上で,提案したニューラルネットワークの有効性を検証した。
論文 参考訳(メタデータ) (2021-08-05T08:03:01Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。