論文の概要: GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning
- arxiv url: http://arxiv.org/abs/2410.23889v1
- Date: Thu, 31 Oct 2024 12:51:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:53.048767
- Title: GEPS: Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning
- Title(参考訳): GEPS:適応条件によるパラメトリックPDEニューラルゾルバの一般化促進
- Authors: Armand Kassaï Koupaï, Jorge Misfut Benet, Yuan Yin, Jean-Noël Vittaut, Patrick Gallinari,
- Abstract要約: データ駆動型アプローチは、異なるPDEパラメータを持つ非常に多種多様な軌跡を組み込むことでパラメトリックPDEを学ぶ。
GEPSはPdeソルバのGEneralizationを促進するための単純な適応機構である。
完全データ駆動型と物理対応型ニューラルソルバの両方に対するアプローチの汎用性を実証する。
- 参考スコア(独自算出の注目度): 14.939978372699084
- License:
- Abstract: Solving parametric partial differential equations (PDEs) presents significant challenges for data-driven methods due to the sensitivity of spatio-temporal dynamics to variations in PDE parameters. Machine learning approaches often struggle to capture this variability. To address this, data-driven approaches learn parametric PDEs by sampling a very large variety of trajectories with varying PDE parameters. We first show that incorporating conditioning mechanisms for learning parametric PDEs is essential and that among them, $\textit{adaptive conditioning}$, allows stronger generalization. As existing adaptive conditioning methods do not scale well with respect to the number of parameters to adapt in the neural solver, we propose GEPS, a simple adaptation mechanism to boost GEneralization in Pde Solvers via a first-order optimization and low-rank rapid adaptation of a small set of context parameters. We demonstrate the versatility of our approach for both fully data-driven and for physics-aware neural solvers. Validation performed on a whole range of spatio-temporal forecasting problems demonstrates excellent performance for generalizing to unseen conditions including initial conditions, PDE coefficients, forcing terms and solution domain. $\textit{Project page}$: https://geps-project.github.io
- Abstract(参考訳): パラメトリック偏微分方程式(PDE)の解法は、時空間力学からPDEパラメータの変動への感度が原因で、データ駆動手法に重要な課題をもたらす。
機械学習のアプローチは、しばしばこの可変性を捉えるのに苦労する。
これを解決するために、データ駆動アプローチは、様々なPDEパラメータを持つ非常に多様な軌跡をサンプリングすることでパラメトリックPDEを学ぶ。
まず、パラメトリックPDE学習のための条件付け機構の導入が不可欠であり、それらのうち、$\textit{adaptive conditioning}$はより強力な一般化を可能にすることを示す。
既存の適応条件付け手法は, ニューラルソルバに適応するパラメータの数に対してうまくスケールしないため, Pde Solvers のGEneralization を1次最適化と, 少数のコンテキストパラメータの低ランク適応により向上させるシンプルな適応機構である GEPS を提案する。
完全データ駆動型と物理対応型ニューラルソルバの両方に対するアプローチの汎用性を実証する。
時空間予測問題における検証は, 初期条件, PDE係数, 強制条件, 解領域を含む未確認条件に一般化する上で, 優れた性能を示す。
$\textit{Project page}$: https://geps-project.github.io
関連論文リスト
- Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods [14.791541465418263]
データに基づいて訓練された物理インフォームド反復アルゴリズムを用いて偏微分方程式(PDE)の解法を学習することを提案する。
本手法は,各PDEインスタンスに自動的に適応する勾配降下アルゴリズムの条件付けを学習する。
複数のデータセットに対する経験的実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-09T12:28:32Z) - Parameterized Physics-informed Neural Networks for Parameterized PDEs [24.926311700375948]
本稿では,パラメータ化物理インフォームドニューラルネットワーク(PINN)の新たな拡張を提案する。
PINNはパラメータ化偏微分方程式(PDE)の解をPDEパラメータの潜在表現を明示的に符号化することでモデル化することができる。
P$2$INNs はベンチマーク 1D と 2D のパラメータ化 PDE において精度とパラメータ効率の両方でベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-08-18T11:58:22Z) - Self-supervised Pretraining for Partial Differential Equations [0.0]
本稿では、トランスフォーマーに基づくニューラルネットワークアーキテクチャの最近の進歩を活用し、ニューラルPDEソルバを構築するための新しいアプローチについて述べる。
我々のモデルは、ネットワークを再トレーニングすることなく、PDEパラメータの異なる値に対するソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-07-03T16:39:32Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
本稿では,HypErplane Reflectionsによる高効率微調整を行うETHER変換ファミリを提案する。
特に,既存のPEFT法と極めて少ないパラメータで一致または性能を向上するEtheRと緩和ETHER+を導入する。
論文 参考訳(メタデータ) (2024-05-30T17:26:02Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Learning Neural PDE Solvers with Parameter-Guided Channel Attention [17.004380150146268]
天気予報、分子動力学、逆設計といった応用領域では、MLベースの代理モデルがますます使われている。
本稿では,ニューラルサロゲートモデルのためのチャネル注意埋め込み(CAPE)コンポーネントと,シンプルで効果的なカリキュラム学習戦略を提案する。
CAPEモジュールは、未知のPDEパラメータに適応できるように、ニューラルPDEソルバと組み合わせることができる。
論文 参考訳(メタデータ) (2023-04-27T12:05:34Z) - Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs [6.649496716171139]
我々は進化偏微分方程式(PDE)の解演算子を近似する新しい計算フレームワークを開発する。
パラメータ空間における制御ベクトル場を学習することにより,PDEの解演算子を近似する。
これにより計算コストを大幅に削減し、任意の初期条件で進化PDEを解くことができる。
論文 参考訳(メタデータ) (2023-01-31T19:26:25Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。