論文の概要: Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs
- arxiv url: http://arxiv.org/abs/2302.00045v2
- Date: Fri, 10 Nov 2023 17:28:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 18:43:31.701094
- Title: Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs
- Title(参考訳): 高次元進化PDEのためのパラメトリック解のニューラル制御
- Authors: Nathan Gaby and Xiaojing Ye and Haomin Zhou
- Abstract要約: 我々は進化偏微分方程式(PDE)の解演算子を近似する新しい計算フレームワークを開発する。
パラメータ空間における制御ベクトル場を学習することにより,PDEの解演算子を近似する。
これにより計算コストを大幅に削減し、任意の初期条件で進化PDEを解くことができる。
- 参考スコア(独自算出の注目度): 6.649496716171139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel computational framework to approximate solution operators
of evolution partial differential equations (PDEs). By employing a general
nonlinear reduced-order model, such as a deep neural network, to approximate
the solution of a given PDE, we realize that the evolution of the model
parameter is a control problem in the parameter space. Based on this
observation, we propose to approximate the solution operator of the PDE by
learning the control vector field in the parameter space. From any initial
value, this control field can steer the parameter to generate a trajectory such
that the corresponding reduced-order model solves the PDE. This allows for
substantially reduced computational cost to solve the evolution PDE with
arbitrary initial conditions. We also develop comprehensive error analysis for
the proposed method when solving a large class of semilinear parabolic PDEs.
Numerical experiments on different high-dimensional evolution PDEs with various
initial conditions demonstrate the promising results of the proposed method.
- Abstract(参考訳): 進化偏微分方程式(PDE)の解演算子を近似する新しい計算フレームワークを開発した。
ディープニューラルネットワークなどの一般的な非線形還元次モデルを用いて与えられたpdeの解を近似することにより,モデルパラメータの進化がパラメータ空間における制御問題であることを示す。
そこで本研究では,パラメータ空間の制御ベクトル場を学習することにより,PDEの解演算子を近似する手法を提案する。
任意の初期値から、この制御フィールドはパラメータを操り、対応する縮小順序モデルがPDEを解くような軌道を生成することができる。
これにより計算コストを大幅に削減し、任意の初期条件で進化PDEを解くことができる。
半線形放物型PDEの多種多様なクラスを解く際に,提案手法の総合的誤差解析も行う。
様々な初期条件の異なる高次元進化PDEに関する数値実験により,提案手法の有望な結果が示された。
関連論文リスト
- Base Models for Parabolic Partial Differential Equations [30.565534769404536]
パラボリック偏微分方程式(PDE)は、様々な数学的対象の進化をモデル化するために多くの分野に現れる。
このPDEの異なるパラメータに対応する複数のシナリオにおいて、パラメトリックPDEに対する解の解や関数を計算することがしばしば必要である。
本稿では,メタラーニングを基盤としたパラボリックPDEの解を見つけるためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:04:28Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Data-Driven Discovery of PDEs via the Adjoint Method [4.014524824655106]
本稿では、与えられたデータに基づいて、基礎となる支配的偏微分方程式(PDE)を発見する方法を提案する。
PDEの形式を同定する上で,提案手法の有効性を示す。
また,その性能をPDE-FIND(PDE-FIND)として有名なPDE関数同定法と比較した。
論文 参考訳(メタデータ) (2024-01-30T17:10:42Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
進化的偏微分方程式の解演算子を近似する有限次元制御法を提案する。
結果は、ハミルトン・ヤコビ・ベルマン方程式を解くための実世界の応用を含む、いくつかの高次元PDEに対して提示される。
論文 参考訳(メタデータ) (2024-01-18T21:45:09Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Solving and Learning Nonlinear PDEs with Gaussian Processes [11.09729362243947]
非線形偏微分方程式を解くための単純で厳密で統一された枠組みを提案する。
提案手法は、コロケーションカーネル法を非線形PDEとIPに自然に一般化する。
IP では,PDE におけるパラメータの同定と解の数値近似を反復的に行う手法が提案されているが,アルゴリズムは両手法を同時に扱う。
論文 参考訳(メタデータ) (2021-03-24T03:16:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。