論文の概要: Parameterized Physics-informed Neural Networks for Parameterized PDEs
- arxiv url: http://arxiv.org/abs/2408.09446v1
- Date: Sun, 18 Aug 2024 11:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:40:30.724776
- Title: Parameterized Physics-informed Neural Networks for Parameterized PDEs
- Title(参考訳): パラメータ化PDEのためのパラメータ化物理インフォームドニューラルネットワーク
- Authors: Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, Noseong Park,
- Abstract要約: 本稿では,パラメータ化物理インフォームドニューラルネットワーク(PINN)の新たな拡張を提案する。
PINNはパラメータ化偏微分方程式(PDE)の解をPDEパラメータの潜在表現を明示的に符号化することでモデル化することができる。
P$2$INNs はベンチマーク 1D と 2D のパラメータ化 PDE において精度とパラメータ効率の両方でベースラインを上回っていることを示す。
- 参考スコア(独自算出の注目度): 24.926311700375948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex physical systems are often described by partial differential equations (PDEs) that depend on parameters such as the Reynolds number in fluid mechanics. In applications such as design optimization or uncertainty quantification, solutions of those PDEs need to be evaluated at numerous points in the parameter space. While physics-informed neural networks (PINNs) have emerged as a new strong competitor as a surrogate, their usage in this scenario remains underexplored due to the inherent need for repetitive and time-consuming training. In this paper, we address this problem by proposing a novel extension, parameterized physics-informed neural networks (P$^2$INNs). P$^2$INNs enable modeling the solutions of parameterized PDEs via explicitly encoding a latent representation of PDE parameters. With the extensive empirical evaluation, we demonstrate that P$^2$INNs outperform the baselines both in accuracy and parameter efficiency on benchmark 1D and 2D parameterized PDEs and are also effective in overcoming the known "failure modes".
- Abstract(参考訳): 複素物理系はしばしば、流体力学におけるレイノルズ数のようなパラメータに依存する偏微分方程式(PDE)によって記述される。
設計最適化や不確実量化といった応用では、これらのPDEの解をパラメータ空間の多くの点で評価する必要がある。
物理インフォームドニューラルネットワーク(PINN)は、サロゲートとして新たな強力な競合相手として現れてきたが、このシナリオでの彼らの使用は、繰り返しおよび時間のかかるトレーニングが本質的に必要であるために、未探索のままである。
本稿では,パラメータ化された物理インフォームドニューラルネットワーク(P$^2$INNs)を新たに提案することで,この問題に対処する。
P$^2$INNs は PDE パラメータの潜在表現を明示的に符号化することでパラメータ化 PDE の解をモデル化することができる。
実験により,P$^2$INNsはベンチマーク1Dおよび2Dパラメータ化PDEの精度とパラメータ効率の両面で高い性能を示し,既知の「障害モード」の克服にも有効であることを示した。
関連論文リスト
- Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - LatentPINNs: Generative physics-informed neural networks via a latent
representation learning [0.0]
本稿では,PDEパラメータの潜在表現をPINNに追加(座標に)入力として利用するフレームワークであるLatentPINNを紹介する。
まず,PDEパラメータの分布の潜在表現を学習する。
第2段階では、解領域内の座標空間からランダムに描画されたサンプルから得られる入力に対して、物理インフォームドニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2023-05-11T16:54:17Z) - CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks [0.0]
与えられたPDEダイナミクスのパラメータがランダムに変化点を示すシナリオにおける部分微分方程式(PDE)の逆問題について検討する。
物理インフォームドニューラルネットワーク(PINN)は,物理法則の解を推定できる普遍近似器である。
本稿では,PDE力学における複数の変更点を許容できる全変量ペナルティを用いたPINN拡張を提案する。
論文 参考訳(メタデータ) (2022-08-18T04:01:07Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。