論文の概要: Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators
- arxiv url: http://arxiv.org/abs/2410.24162v1
- Date: Thu, 31 Oct 2024 17:20:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:55.755179
- Title: Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators
- Title(参考訳): 事前学習型および微調整型アテンション駆動型ニューラル演算子を用いた後電圧軌跡の整合予測
- Authors: Amirhossein Mollaali, Gabriel Zufferey, Gonzalo Constante-Flores, Christian Moya, Can Li, Guang Lin, Meng Yue,
- Abstract要約: 本稿では,電力系統における後電圧トラジェクトリの間隔を予測するための新しいデータ駆動手法を提案する。
提案した演算子回帰モデルでは、電圧軌跡の観測された部分を、観測後の未観測軌跡にマッピングする。
ニューイングランド39バス試験システムを用いて提案手法の性能評価を行った。
- 参考スコア(独自算出の注目度): 9.336308366735656
- License:
- Abstract: This paper proposes a new data-driven methodology for predicting intervals of post-fault voltage trajectories in power systems. We begin by introducing the Quantile Attention-Fourier Deep Operator Network (QAF-DeepONet), designed to capture the complex dynamics of voltage trajectories and reliably estimate quantiles of the target trajectory without any distributional assumptions. The proposed operator regression model maps the observed portion of the voltage trajectory to its unobserved post-fault trajectory. Our methodology employs a pre-training and fine-tuning process to address the challenge of limited data availability. To ensure data privacy in learning the pre-trained model, we use merging via federated learning with data from neighboring buses, enabling the model to learn the underlying voltage dynamics from such buses without directly sharing their data. After pre-training, we fine-tune the model with data from the target bus, allowing it to adapt to unique dynamics and operating conditions. Finally, we integrate conformal prediction into the fine-tuned model to ensure coverage guarantees for the predicted intervals. We evaluated the performance of the proposed methodology using the New England 39-bus test system considering detailed models of voltage and frequency controllers. Two metrics, Prediction Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width (PINAW), are used to numerically assess the model's performance in predicting intervals. The results show that the proposed approach offers practical and reliable uncertainty quantification in predicting the interval of post-fault voltage trajectories.
- Abstract(参考訳): 本稿では, 電力系統における後電圧トラジェクトリの間隔を予測するための新しいデータ駆動手法を提案する。
まず、電圧トラジェクトリの複雑なダイナミクスを捉えるために設計されたQuantile Attention-Fourier Deep Operator Network (QAF-DeepONet)を導入する。
提案した演算子回帰モデルでは、電圧軌跡の観測された部分を、観測後の未観測軌跡にマッピングする。
我々の方法論は、データ可用性の制限という課題に対処するために、事前学習と微調整のプロセスを採用している。
事前学習モデル学習におけるデータのプライバシを確保するため,フェデレーション学習と近隣バスのデータとのマージを用いて,データを直接共有することなく,その基盤となる電圧ダイナミクスを学習することができる。
事前トレーニング後、ターゲットバスのデータでモデルを微調整し、ユニークなダイナミクスや動作条件に適応できるようにします。
最後に、予測間隔のカバレッジ保証を確保するために、共形予測を微調整モデルに統合する。
ニューイングランド39バス試験システムを用いて,電圧・周波数制御の詳細なモデルを考慮した提案手法の性能評価を行った。
予測区間被覆確率 (PICP) と予測区間正規化平均幅 (PINAW) の2つの指標を用いて, 間隔の予測においてモデルの性能を数値的に評価する。
その結果, 提案手法は, 後電圧軌跡の間隔を予測する上で, 実用的で確実な不確実性定量化を提供することを示した。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Adaptive Uncertainty Quantification for Trajectory Prediction Under Distributional Shift [6.029850098632435]
軌道予測モデルは、有限未来の軌道とその関連する不確実性の両方をオンライン環境で推測することができる。
本研究では、予測された軌道の不確かさを定量化するために、分散シフトフレームワークCUQDSのコンフォーマル不確実性定量化を提案する。
論文 参考訳(メタデータ) (2024-06-17T21:25:36Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
本稿では,時空間交通流予測問題に対するオンラインテスト時間適応手法の最初の研究を行う。
本稿では,直列分解法(ADCSD)による適応二重補正法を提案する。
提案手法では,テストフェーズ中にトレーニングされたモデル全体を微調整する代わりに,トレーニングされたモデルの後,ライトネットワークをアタッチし,データ入力が観測されるたびに,ライトネットワークのみをテストプロセスで微調整する。
論文 参考訳(メタデータ) (2024-01-08T12:04:39Z) - Reliable Prediction Intervals with Regression Neural Networks [1.569545894307769]
本稿では,従来の回帰ニューラルネットワーク(NN)を拡張して,所要の信頼度を満たす予測間隔で生成する点予測を置き換える手法を提案する。
提案手法は,信頼度を予測に割り当てるための新しい機械学習フレームワークである Conformal Prediction (CP) に従う。
提案手法は,4つのベンチマークデータセットと,電離圏間リンクにおいて重要なパラメータであるトータル・エレクトロン・コンテント(TEC)の予測問題について評価する。
論文 参考訳(メタデータ) (2023-12-15T08:39:02Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - Debiased Fine-Tuning for Vision-language Models by Prompt Regularization [50.41984119504716]
本稿では,Prompt Regularization(ProReg)と呼ばれる下流タスクにおける大規模視覚事前訓練モデルの微調整のための新しいパラダイムを提案する。
ProRegは、事前訓練されたモデルに微調整を正規化するよう促すことで予測を使用する。
本稿では,従来の微調整,ゼロショットプロンプト,プロンプトチューニング,その他の最先端手法と比較して,ProRegの性能が一貫して高いことを示す。
論文 参考訳(メタデータ) (2023-01-29T11:53:55Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。