Emulating a quantum Maxwell's demon with non-separable structured light
- URL: http://arxiv.org/abs/2411.03893v1
- Date: Wed, 06 Nov 2024 13:10:03 GMT
- Title: Emulating a quantum Maxwell's demon with non-separable structured light
- Authors: Edgar Medina-Segura, Paola C. Obando, Light Mkhumbuza, Enrique J. Galvez, Carmelo Rosales-Guzmán, Gianluca Ruffato, Filippo Romanato, Andrew Forbes, Isaac Nape,
- Abstract summary: Maxwell's demon (MD) has proven an instructive vehicle by which to explore the relationship between information theory and thermodynamics.
Here, we use classical vectorially structured light that is non-separable in spin and orbital angular momentum to emulate a quantum MD experiment.
We show that our MD is able to extract useful work from the system in the form of orbital angular momentum, opening a path to information driven optical spanners.
- Score: 0.0
- License:
- Abstract: Maxwell's demon (MD) has proven an instructive vehicle by which to explore the relationship between information theory and thermodynamics, fueling the possibility of information driven machines. A long standing debate has been the concern of entropy violation, now resolved by the introduction of a quantum MD, but this theoretical suggestion has proven experimentally challenging. Here, we use classical vectorially structured light that is non-separable in spin and orbital angular momentum to emulate a quantum MD experiment. Our classically entangled light fields have all the salient properties necessary of their quantum counterparts but without the experimental complexity of controlling quantum entangled states. We use our experiment to show that the demon's entropy increases during the process while the system's entropy decreases, so that the total entropy is conserved through an exchange of information, confirming the theoretical prediction. We show that our MD is able to extract useful work from the system in the form of orbital angular momentum, opening a path to information driven optical spanners for the mechanical rotation of objects with light. Our synthetic dimensions of angular momentum can easily be extrapolated to other degrees of freedom, for scalable and robust implementations of MDs at both the classical and quantum realms, enlightening the role of a structured light MD and its capability to control and measure information.
Related papers
- A Method Using Photon Collapse and Entanglement to Transmit Information [13.438312709072457]
We find that measurements cause quantum wave functions to collapse.
By studying the overlooked phenomena of quantum wave function collapse, we find that quantum eigenstate sets may be artificially controlled.
We propose an innovative method for direct information transmission utilizing photon wave function collapse and entanglement.
arXiv Detail & Related papers (2024-06-27T13:22:21Z) - Demonstration of Maxwell Demon-assistant Einstein-Podolsky-Rosen
Steering via Superconducting Quantum Processor [22.793245624610755]
The concept of Maxwell demon plays an essential role in connecting thermodynamics and information theory, while entanglement and non-locality are fundamental features of quantum theory.
Recently, a novel concept called Maxwell demon-assistant Einstein-Podolsky-Rosen (EPR) steering has been proposed, which suggests that it is possible to simulate quantum correlation by doing work.
In this study, we demonstrate Maxwell demon-assistant EPR steering with superconducting quantum circuits.
arXiv Detail & Related papers (2023-11-18T03:27:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Improving Metrology with Quantum Scrambling [0.520082039162174]
Quantum scrambling describes the fast spreading of quantum information into many degrees of freedom of a many-body quantum system.
We probe the exponential scrambling nature of the Lipkin-Meshkov-Glick (LMG) many-body Hamiltonian.
Our experiment paves the way to the investigation of quantum chaos and scrambling in controlled tabletop experiments.
arXiv Detail & Related papers (2022-12-24T20:00:52Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Autonomous dissipative Maxwell's demon in a diamond spin qutrit [0.0]
We experimentally realize an autonomous feedback process (Maxwell demon) with tunable dissipative strength.
The efficacy of the Maxwell demon is quantified by experimentally characterizing the fluctuations of the energy exchanged by the system with the environment.
This opens the way to the implementation of a new class of Maxwell demons, which could be useful for quantum sensing and quantum thermodynamic devices.
arXiv Detail & Related papers (2021-05-28T17:40:17Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Maxwell Demon and Einstein-Podolsky-Rosen Steering [4.671908141423216]
We consider whether quantum non-locality correlations can be simulated by performing work.
The Maxwell demon-assisted Einstein-Podolsky-Rosen steering is thus proposed.
We construct a quantum circuit model of Maxwell demon-assisted EPR steering.
arXiv Detail & Related papers (2021-05-12T13:45:28Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.