論文の概要: Decoding Quasi-Cyclic Quantum LDPC Codes
- arxiv url: http://arxiv.org/abs/2411.04464v1
- Date: Thu, 07 Nov 2024 06:25:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:35:41.184170
- Title: Decoding Quasi-Cyclic Quantum LDPC Codes
- Title(参考訳): 準周期量子LDPC符号の復号化
- Authors: Louis Golowich, Venkatesan Guruswami,
- Abstract要約: 量子低密度パリティチェック(qLDPC)符号は耐故障性を求める上で重要な要素である。
近年のqLDPC符号の進歩は、量子的に良好であり、線形時間デコーダが符号ワード量子ビットの一定数に影響を与える誤りを正すという構成に繋がった。
実際には、2つの繰り返し符号の産物である表面/履歴符号は依然としてqLDPC符号として選択されることが多い。
- 参考スコア(独自算出の注目度): 23.22566380210149
- License:
- Abstract: Quantum low-density parity-check (qLDPC) codes are an important component in the quest for quantum fault tolerance. Dramatic recent progress on qLDPC codes has led to constructions which are asymptotically good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits. These constructions, while theoretically explicit, rely on inner codes with strong properties only shown to exist by probabilistic arguments, resulting in lengths that are too large to be practically relevant. In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice. A previous construction based on the lifted product of an expander-based classical LDPC code with a repetition code (Panteleev & Kalachev, 2020) achieved a near-linear distance (of $\Omega(N/\log N)$ where $N$ is the number of codeword qubits), and avoids the need for such intractable inner codes. Our main result is an efficient decoding algorithm for these codes that corrects $\Theta(N/\log N)$ adversarial errors. En route, we give such an algorithm for the hypergraph product version these codes, which have weaker $\Theta(\sqrt{N})$ distance (but are simpler). Our decoding algorithms leverage the fact that the codes we consider are quasi-cyclic, meaning that they respect a cyclic group symmetry. Since the repetition code is not based on expanders, previous approaches to decoding expander-based qLDPC codes, which typically worked by greedily flipping code bits to reduce some potential function, do not apply in our setting. Instead, we reduce our decoding problem (in a black-box manner) to that of decoding classical expander-based LDPC codes under noisy parity-check syndromes. For completeness, we also include a treatment of such classical noisy-syndrome decoding that is sufficient for our application to the quantum setting.
- Abstract(参考訳): 量子低密度パリティチェック(qLDPC)符号は、量子フォールトトレランスの探求において重要な要素である。
qLDPC符号の劇的な進歩は、漸近的に良好であり、線形時間デコーダが一定の数の符号ワード量子ビットに影響を及ぼす誤りを正すという構造に繋がった。
これらの構成は理論上は明らかであるが、強い性質を持つ内部符号に依存しており、確率論的議論によってのみ存在することが示され、結果として実用的に関係を持つには大きすぎる長さとなる。
実際には、2つの繰り返し符号の産物である表面/履歴符号は依然としてqLDPC符号として選択されることが多い。
Panteleev & Kalachev, 2020) の繰り返し符号を持つ拡張器ベースの古典LDPC符号の持ち上げ積に基づく以前の構成は、ほぼ直線距離($\Omega(N/\log N)$で、$N$はコードワードキュービット数である)を達成した。
我々の主な成果は、これらの符号に対する効率的な復号アルゴリズムであり、$\Theta(N/\log N)$逆誤差を補正する。
途中、これらの符号はより弱い$\Theta(\sqrt{N})$ distance(ただしより単純な)である。
我々の復号アルゴリズムは、我々が考える符号が準巡回であるという事実を利用しており、これは巡回群対称性を尊重することを意味する。
繰り返し符号は拡張器をベースとしないため、拡張器ベースのqLDPC符号を復号する従来の手法は、典型的には、潜在的な機能を減らすためにコードビットをゆるやかに反転させることで機能するが、この設定では適用されない。
代わりに、(ブラックボックス方式で)復号問題を、ノイズのあるパリティチェック症候群の下で古典的な拡張器ベースのLDPC符号の復号化に還元する。
完全性については、量子設定への応用に十分な古典的なノイズ・シンドローム復号処理も含む。
関連論文リスト
- List Decodable Quantum LDPC Codes [49.2205789216734]
我々は、ほぼ最適レート距離のトレードオフを持つ量子低密度パリティチェック(QLDPC)符号の構成を行う。
復号化可能なQLDPCコードとユニークなデコーダを効率よくリストアップする。
論文 参考訳(メタデータ) (2024-11-06T23:08:55Z) - Collective Bit Flipping-Based Decoding of Quantum LDPC Codes [0.6554326244334866]
可変次数-3(dv-3)QLDPC符号の繰り返し復号化による誤り訂正性能と復号遅延の両方を改善した。
我々の復号方式は、ビットフリップ(BF)デコーディングの修正版、すなわち2ビットビットフリップ(TBF)デコーディングを適用することに基づいている。
論文 参考訳(メタデータ) (2024-06-24T18:51:48Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
本稿では,バイナリ線形ブロック符号の統一エンコーダデコーダトレーニングを初めて提案する。
また,コード勾配の効率的なバックプロパゲーションのために,自己注意マスキングを行うトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2024-05-07T06:47:12Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
量子LDPC符号は、消滅する符号化率を持つ表面符号から、一定の符号化率と線形距離を持つ非常に有望な符号まで様々である。
我々は、一般化自転車(GB)符号として知られる量子LDPC符号のサブセットにインスパイアされた小さな量子符号を考案した。
論文 参考訳(メタデータ) (2024-01-15T10:38:13Z) - A Joint Code and Belief Propagation Decoder Design for Quantum LDPC Codes [5.194602156761048]
本稿では,QLDPC符号のための新しいジョイントコードとデコーダ設計を提案する。
合同符号はブロック長の平方根の最小距離を持つ。
その結果, 脱分極チャネル上でのデコード性能が顕著であった。
論文 参考訳(メタデータ) (2024-01-12T20:07:16Z) - Spatially-Coupled QDLPC Codes [3.6622737533847936]
トーリック符号を古典的空間結合符号(2D-SC)の量子対として記述する。
畳み込みLDPC符号のクラスとして空間結合型量子LDPC(SC-QLDPC)符号を導入する。
本稿では1/10未満のQLDPC符号に焦点をあてるが、2D-SC HGP符号は少ないメモリ、高いレート(約1/3)、優れた閾値で構築する。
論文 参考訳(メタデータ) (2023-04-29T00:57:57Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
ホモロジー量子ローター符号は 論理ローターと論理キューディットを 同一のコードブロックにエンコードできる
0$-$pi$-qubit と Kitaev の現在のミラー量子ビットは、確かにそのような符号の小さな例である。
論文 参考訳(メタデータ) (2023-03-24T00:29:15Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Morphing quantum codes [77.34726150561087]
我々は15キュービットのReed-Muller符号を変形し、フォールトトレラントな論理的な$T$ゲートを持つ最小の安定化器符号を得る。
色符号を変形させることにより、ハイブリッドな色履歴符号の族を構築する。
論文 参考訳(メタデータ) (2021-12-02T17:43:00Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
ランドマークコードは、Reed-Muller、BCH、Convolution、Turbo、LDPC、Polarといった信頼性の高い物理層通信を支える。
本論文では、ディープラーニング駆動型(エンコーダ、デコーダ)ペアの計算効率の良いファミリーであるKO符号を構築する。
KO符号は最先端のリード・ミュラー符号と極符号を破り、低複雑さの逐次復号法で復号された。
論文 参考訳(メタデータ) (2021-08-29T21:08:30Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
トレリス復号器は強い構造を持ち、古典的符号化理論を用いて結果をガイドとして拡張し、復号グラフの構造特性を計算できる正準形式を示す。
修正されたデコーダは、任意の安定化コード$S$で動作し、コードの正規化子のコンパクトでグラフィカルな表現を構築するワンタイムオフライン、$Sperp$、Viterbiアルゴリズムを使った高速でパラレルなオンライン計算である。
論文 参考訳(メタデータ) (2021-06-15T16:01:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。