論文の概要: Hierarchical memories: Simulating quantum LDPC codes with local gates
- arxiv url: http://arxiv.org/abs/2303.04798v2
- Date: Thu, 24 Apr 2025 16:30:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.468493
- Title: Hierarchical memories: Simulating quantum LDPC codes with local gates
- Title(参考訳): 階層記憶:局所ゲートを用いた量子LDPC符号のシミュレーション
- Authors: Christopher A. Pattison, Anirudh Krishna, John Preskill,
- Abstract要約: K = Omega(N/log(N)2)$をエンコードする$[[N,K,D]]$の新たなファミリーを構築します。
この符号系列のN番目の要素は、定レート量子LDPC符号と曲面符号とを連結して得られる。
保守的な仮定の下では、階層的コードは、全ての論理量子ビットが曲面コードに符号化される基本符号化よりも優れていることが分かる。
- 参考スコア(独自算出の注目度): 0.016385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories. However, if physical gates are subject to geometric-locality constraints, it becomes challenging to realize these codes. In this paper, we construct a new family of $[[N,K,D]]$ codes, referred to as hierarchical codes, that encode a number of logical qubits $K = \Omega(N/\log(N)^2)$. The N-th element of this code family is obtained by concatenating a constant-rate quantum LDPC code with a surface code; nearest-neighbor gates in two dimensions are sufficient to implement the corresponding syndrome-extraction circuit and achieve a threshold. Below threshold the logical failure rate vanishes superpolynomially as a function of the distance $D(N)$. We present a bilayer architecture for implementing the syndrome-extraction circuit, and estimate the logical failure rate for this architecture. Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.
- Abstract(参考訳): 一定のレートの低密度パリティチェック(LDPC)符号は、効率的なフォールトトレラント量子メモリを構築する上で有望な候補である。
しかし、物理ゲートが幾何学的局所性制約を受けると、これらの符号を実現することは困難になる。
本稿では, 論理量子ビット数$K = \Omega(N/\log(N)^2)$をエンコードする, 階層コードと呼ばれる$[N,K,D]$の新たなファミリーを構築する。
この符号ファミリーのN番目の要素は、定レート量子LDPC符号と曲面コードとを連結して得られるものであり、隣り合う2次元のゲートは、対応するシンドローム抽出回路を実装し閾値を得るのに十分である。
下限では、論理的失敗率は、距離$D(N)$の関数として超多項式的に消滅する。
本稿では、シンドローム抽出回路を実装するための2層アーキテクチャを提案し、このアーキテクチャの論理的故障率を推定する。
保守的な仮定の下では、階層的コードは、全ての論理量子ビットが曲面コードに符号化される基本符号化よりも優れていることが分かる。
関連論文リスト
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
量子低密度パリティチェック(qLDPC)符号は耐故障性を求める上で重要な要素である。
近年のqLDPC符号の進歩は、量子的に良好であり、線形時間デコーダが符号ワード量子ビットの一定数に影響を与える誤りを正すという構成に繋がった。
実際には、2つの繰り返し符号の産物である表面/履歴符号は依然としてqLDPC符号として選択されることが多い。
論文 参考訳(メタデータ) (2024-11-07T06:25:27Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
我々は、ほぼ最適レート距離のトレードオフを持つ量子低密度パリティチェック(QLDPC)符号の構成を行う。
復号化可能なQLDPCコードとユニークなデコーダを効率よくリストアップする。
論文 参考訳(メタデータ) (2024-11-06T23:08:55Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
本稿では,量子リード・ミュラー符号(RM)のゲートを,古典的特性を利用して特徴付けることを目的とする。
RM符号のための安定化器生成器のセットは、特定の次元のサブキューブに作用する$X$と$Z$演算子によって記述することができる。
論文 参考訳(メタデータ) (2024-10-10T04:07:24Z) - Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes [1.870400753080051]
本稿では,高次曲面符号と高次カラー符号の2種類のQLDPC符号について考察する。
次数4 FPNは、それぞれ2.9times$と5.5times$で、d = 5$平面面符号よりも空間効率が高い。
双曲符号は、その平面コードに匹敵するエラー率を持つ。
論文 参考訳(メタデータ) (2024-09-22T01:08:58Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
クビットCSSコード間の手術を自動化するための,オープンソースの軽量PythonパッケージであるSSIP(Identifying Pushouts)による安全手術について述べる。
ボンネットの下では、鎖複体の圏における普遍構成によって支配される$mathbbF$上の線型代数を実行する。
高い符号距離を犠牲にすることなく,手術によって様々な論理的測定を安価に行うことができることを示す。
論文 参考訳(メタデータ) (2024-07-12T16:50:01Z) - Toward a 2D Local Implementation of Quantum LDPC Codes [1.1936126505067601]
幾何学的局所性は量子低密度パリティチェック(qLDPC)符号の重要な理論的および実践的な要素である。
本稿では,2次元局所ゲートに制限された場合の動作オーバーヘッドを低減することを目的とした,2層アーキテクチャ上に構築された誤り訂正プロトコルを提案する。
論文 参考訳(メタデータ) (2024-04-26T19:48:07Z) - LDPC-cat codes for low-overhead quantum computing in 2D [3.9373541926236766]
量子低密度パリティチェック(qLDPC)符号は、フォールトトレラント量子コンピューティングのオーバーヘッドを大幅に削減するための有望な構成である。
フォールトトレランスのハードウェアオーバーヘッドを削減する別のアプローチとして、ボソニックキャットキュービットを使用する方法がある。
位相フリップのための古典的LDPC符号で抑制された猫量子ビットに基づくアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T19:00:05Z) - Long-range-enhanced surface codes [0.0]
曲面符号は1つの論理量子ビットに対する量子誤り訂正符号であり、2次元の空間的局所化パリティチェックによって保護される。
より論理的な量子ビットを格納するには、エラーに対して表面コードの堅牢性を犠牲にするか、物理量子ビットの数を増やすかが必要となる。
長距離拡張曲面符号は、数百の物理量子ビットを用いた従来の曲面符号よりも優れており、短期デバイスにおける論理量子ビットの堅牢性を高めるための実用的な戦略である。
論文 参考訳(メタデータ) (2023-09-21T01:39:31Z) - Spatially-Coupled QDLPC Codes [3.6622737533847936]
トーリック符号を古典的空間結合符号(2D-SC)の量子対として記述する。
畳み込みLDPC符号のクラスとして空間結合型量子LDPC(SC-QLDPC)符号を導入する。
本稿では1/10未満のQLDPC符号に焦点をあてるが、2D-SC HGP符号は少ないメモリ、高いレート(約1/3)、優れた閾値で構築する。
論文 参考訳(メタデータ) (2023-04-29T00:57:57Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
ホモロジー量子ローター符号は 論理ローターと論理キューディットを 同一のコードブロックにエンコードできる
0$-$pi$-qubit と Kitaev の現在のミラー量子ビットは、確かにそのような符号の小さな例である。
論文 参考訳(メタデータ) (2023-03-24T00:29:15Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
我々はQLDPC符号を用いてGHZ状態を蒸留し、その結果、高忠実度論理GHZ状態は分散量子コンピューティングに使用されるコードと直接対話することができる。
本研究は,大規模GHZ状態にも適用し,拡張性のあるGHZ浄化プロトコルを構築するために,3$-qubit GHZ状態の測定特性に関する技術的結果を拡張した。
論文 参考訳(メタデータ) (2022-10-25T16:42:32Z) - Partitioning qubits in hypergraph product codes to implement logical
gates [0.0]
トランスバーサルゲートは、最も単純なフォールトトレラント論理ゲートである。
LDPC符号における普遍量子コンピューティングの基盤としてゲートが利用できることを示す。
論文 参考訳(メタデータ) (2022-04-22T16:45:19Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
本稿では,プラットフォームに依存しない論理ゲート定義の必要性から,普遍的なフォールトトレラント論理の枠組みを提案する。
資源オーバーヘッドを改善するユニバーサル論理の新しいスキームについて検討する。
境界のない計算に好適な論理誤差率を動機として,新しい計算手法を提案する。
論文 参考訳(メタデータ) (2021-12-22T19:00:03Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
我々は、$c-不連続性を計算すること、あるいはそれを定数乗算係数の範囲内で近似することの問題はNP完全であることを示す。
CSSコード、$dコード、ハイパーグラフコードなど、さまざまなコードファミリの相違点に関するバウンダリを提供します。
以上の結果から,一般的な量子誤り訂正符号に対するフォールトトレラント論理ゲートの発見は,計算に難題であることが示唆された。
論文 参考訳(メタデータ) (2021-08-10T15:00:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。