論文の概要: Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans?
- arxiv url: http://arxiv.org/abs/2411.06542v2
- Date: Thu, 14 Nov 2024 16:22:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 11:44:43.442766
- Title: Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans?
- Title(参考訳): スムース力学に対する線形フィードバックは接触リッチ計画の安定化に有効か?
- Authors: Yuki Shirai, Tong Zhao, H. J. Terry Suh, Huaijiang Zhu, Xinpei Ni, Jiuguang Wang, Max Simchowitz, Tao Pang,
- Abstract要約: 本稿では,接触平滑化に基づく微分シミュレータを用いた線形制御器合成の有効性を解析する。
我々は300以上の軌道上で実証実験を行い、なぜLQRがコンタクトリッチプランの安定化に不十分なように見えるのかを分析した。
- 参考スコア(独自算出の注目度): 26.26239969660602
- License:
- Abstract: Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. Contact smoothing approximates a non-smooth system with a smooth one, allowing one to use these synthesis tools more effectively. However, applying classical control synthesis methods to smoothed contact dynamics remains relatively under-explored. This paper analyzes the efficacy of linear controller synthesis using differential simulators based on contact smoothing. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Using robotic bimanual whole-body manipulation as a testbed, we perform extensive empirical experiments on over 300 trajectories and analyze why LQR seems insufficient for stabilizing contact-rich plans. The video summarizing this paper and hardware experiments is found here: https://youtu.be/HLaKi6qbwQg?si=_zCAmBBD6rGSitm9.
- Abstract(参考訳): コンタクトリッチな操作のためのプランナーとコントローラの設計は、多くの勾配ベースのコントローラ合成ツールが想定する滑らかな条件に反するので、非常に難しい。
接触平滑化は非滑らかなシステムと滑らかなシステムとを近似し、これらの合成ツールをより効果的に利用することができる。
しかし、古典的な制御合成法をスムーズな接触力学に適用することは、いまだに未解明のままである。
本稿では,接触平滑化に基づく微分シミュレータを用いた線形制御器合成の有効性を解析する。
接触平滑化を計算に活用するための自然なベースラインを導入する
(a)未確定条件及び/又は力学に頑健なオープンループ計画
b) フィードバックはオープンループ計画の周囲で安定する。
ロボットによる全身操作をテストベッドとして使用し、300以上の軌道上で大規模な実験を行い、LQRが接触豊富な計画の安定化に不十分な理由を分析した。
この論文とハードウェアの実験を要約したビデオは以下のとおりである。
si=_zCAmBBD6rGSitm9。
関連論文リスト
- TLControl: Trajectory and Language Control for Human Motion Synthesis [68.09806223962323]
本稿では,人間のリアルな動き合成のための新しい手法であるTLControlを提案する。
低レベルのTrajectoryと高レベルのLanguage semanticsコントロールが組み込まれている。
インタラクティブで高品質なアニメーション生成には実用的である。
論文 参考訳(メタデータ) (2023-11-28T18:54:16Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT)は、学習に基づくアプローチであり、現実世界の大きな乱れの存在下で、任意の、潜在的に実現不可能な軌跡を正確に追跡することができる。
DATTは、非定常風場における可溶性および非実用性の両方の軌道に対して、競争適応性非線形およびモデル予測コントローラを著しく上回っている。
適応非線形モデル予測制御ベースラインの1/4未満である3.2ms未満の推論時間で、効率的にオンラインで実行することができる。
論文 参考訳(メタデータ) (2023-10-13T12:22:31Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
本研究では,空中すべり作業に対する学習に基づく適応制御手法を提案する。
提案するコントローラ構造は,データ駆動制御とモデルベース制御を組み合わせたものである。
美術品間相互作用制御手法の微調整状態と比較して,追従誤差の低減と外乱拒否の改善を実現した。
論文 参考訳(メタデータ) (2022-06-28T16:28:59Z) - Differentiable Simulation of Soft Multi-body Systems [99.4302215142673]
我々は、Projective Dynamics内でトップダウン行列アセンブリアルゴリズムを開発する。
筋肉,関節トルク,空気圧管によって駆動される軟口蓋体に対して,異なる制御機構を導出する。
論文 参考訳(メタデータ) (2022-05-03T20:03:22Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
線形力学系に対する非線形出力フィードバックコントローラのパラメータ化を提案する。
提案手法は, 制約を満たすことなく, 部分的に観測可能な線形力学系の閉ループ安定性を保証する。
論文 参考訳(メタデータ) (2021-12-08T10:43:47Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - Trajectory Tracking of Underactuated Sea Vessels With Uncertain
Dynamics: An Integral Reinforcement Learning Approach [2.064612766965483]
積分強化学習に基づくオンライン機械学習メカニズムを提案し,非線形追跡問題のクラスに対する解を求める。
このソリューションは、適応的批評家と勾配降下アプローチを用いて実現されるオンライン価値反復プロセスを用いて実装される。
論文 参考訳(メタデータ) (2021-04-01T01:41:49Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
従来の四重化制御のアプローチでは、単純化された手作りのモデルが採用されている。
これにより、有効な運動範囲が縮小されているため、ロボットの能力が大幅に低下する。
この研究において、これらの課題は、構造化潜在空間における最適化として四重化制御をフレーミングすることによって解決される。
深い生成モデルは、実現可能な関節構成の統計的表現を捉え、一方、複雑な動的および終端的制約は高レベルな意味的指標によって表現される。
実世界とシミュレーションの両方で最適化された移動軌跡の実現可能性を検証する。
論文 参考訳(メタデータ) (2020-07-03T07:04:18Z) - ADD: Analytically Differentiable Dynamics for Multi-Body Systems with
Frictional Contact [26.408218913234872]
剛体および変形可能な物体に対する摩擦接触を処理できる微分可能な動的解法を提案する。
本手法は, 摩擦接触の非平滑な性質に起因した主な困難を回避できる。
論文 参考訳(メタデータ) (2020-07-02T09:51:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。