論文の概要: Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2411.06822v1
- Date: Mon, 11 Nov 2024 09:30:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:14.613880
- Title: Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms
- Title(参考訳): 量子アルゴリズムの特定のクラスをシミュレートする単一量子行列測定の効率的な古典計算法
- Authors: Santana Y. Pradata, M 'Anin N. 'Azhiim, Hendry M. Lim, Ahmad R. T. Nugraha,
- Abstract要約: 我々は、ニューラルネットワークを利用してユニタリ変換を生成する新しいCNOT"機能"を導入する。
ランダム回路シミュレーションでは,QC-DFTの修正により,単一キュービットの辺り測定確率の効率的な計算が可能となった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Classical simulations of quantum circuits are essential for verifying and benchmarking quantum algorithms, particularly for large circuits, where computational demands increase exponentially with the number of qubits. Among available methods, the classical simulation of quantum circuits inspired by density functional theory -- the so-called QC-DFT method, shows promise for large circuit simulations as it approximates the quantum circuits using single-qubit reduced density matrices to model multi-qubit systems. However, the QC-DFT method performs very poorly when dealing with multi-qubit gates. In this work, we introduce a novel CNOT "functional" that leverages neural networks to generate unitary transformations, effectively mitigating the simulation errors observed in the original QC-DFT method. For random circuit simulations, our modified QC-DFT enables efficient computation of single-qubit marginal measurement probabilities, or single-qubit probability (SQPs), and achieves lower SQP errors and higher fidelities than the original QC-DFT method. Despite limitations in capturing full entanglement and joint probability distributions, we find potential applications of SQPs in simulating Shor's and Grover's algorithms for specific solution classes. These findings advance the capabilities of classical simulations for some quantum problems and provide insights into managing entanglement and gate errors in practical quantum computing.
- Abstract(参考訳): 量子回路の古典的なシミュレーションは量子アルゴリズムの検証とベンチマークに不可欠であり、特に大きな回路では、量子ビットの数とともに計算要求が指数関数的に増加する。
利用可能な方法の中で、密度汎関数理論(いわゆるQC-DFT法)にインスパイアされた量子回路の古典的なシミュレーションは、量子回路を1量子ビット還元密度行列を用いて近似してマルチキュービット系をモデル化することで、大きな回路シミュレーションを約束することを示している。
しかし、マルチキュービットゲートを扱う場合、QC-DFT法は非常に不十分である。
本研究では,ニューラルネットワークを利用してユニタリ変換を生成する新しいCNOT機能を導入し,元のQC-DFT法で観測されたシミュレーション誤差を効果的に軽減する。
乱数回路シミュレーションでは, 修正されたQC-DFTは, 単一キュービット残差測定確率(SQP)の効率的な計算を可能にし, 元のQC-DFT法よりも低いSQP誤差と高い忠実度を実現する。
完全絡み合いと結合確率分布の制限にもかかわらず、特定の解クラスに対するショアとグローバーのアルゴリズムをシミュレートするSQPの潜在的な応用を見出す。
これらの知見は、いくつかの量子問題に対する古典的なシミュレーションの能力を前進させ、実用的な量子コンピューティングにおける絡み合いとゲートエラーの管理に関する洞察を与える。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
雑音の多いコンピュータ上でのオープン量子システムの力学をシミュレートする実用的な手法を提案する。
提案手法は,IBM-Q実機におけるゲートノイズを利用して,2量子ビットのみを用いて計算を行う。
最後に、トロッター展開を行う際の量子回路の深さの増大に対処するため、短期力学シミュレーションを拡張するために転送テンソル法(TTM)を導入した。
論文 参考訳(メタデータ) (2023-12-03T13:56:41Z) - Efficient Mean-Field Simulation of Quantum Circuits Inspired by Density
Functional Theory [1.3561290928375374]
量子回路(QC)の正確なシミュレーションは、現在$sim$50 qubitsに制限されている。
ここでは密度汎関数理論(DFT)にインスパイアされたQCのシミュレーションを示す。
我々の計算では、共通ゲートセットを持つ複数のQCのクラスにおいて、90%以上の精度で限界単一量子ビット確率を予測できる。
論文 参考訳(メタデータ) (2022-10-29T02:12:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
本研究では、堅牢性多変数混合整数プログラム(MIP)の解法を含むReLUネットワークの検証について検討する。
この問題を軽減するために、ニューラルネットワーク検証にQCを用い、証明可能な証明書を計算するためのハイブリッド量子プロシージャを導入することを提案する。
シミュレーション環境では,我々の証明は健全であり,問題の近似に必要な最小量子ビット数に制限を与える。
論文 参考訳(メタデータ) (2022-05-02T13:23:56Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
フォールトトレラントな量子コンピュータは、既知の古典的コンピュータよりも優れたアプリケーションを提供するので、楽しみにしている。
既に存在する、ノイズの多い中間スケール量子(NISQ)デバイスのパワーを活用して実現には何十年もかかるだろう。
本稿では、パラメタライズド量子回路を用いて、エルミタン行列指数をシミュレートする手法を報告する。
論文 参考訳(メタデータ) (2021-05-28T06:37:12Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
本稿では,一方のランダム化コンパイルの利点と他方の高次多重積公式を結合した量子シミュレーション手法を提案する。
本フレームワークは,振幅増幅を回避し,回路深度を低減させる。
本アルゴリズムは回路深さとともに指数関数的に縮小するシミュレーション誤差を実現する。
論文 参考訳(メタデータ) (2021-01-19T19:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。