論文の概要: Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M type classification
- arxiv url: http://arxiv.org/abs/2502.06281v1
- Date: Mon, 10 Feb 2025 09:23:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:33:54.621373
- Title: Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M type classification
- Title(参考訳): 量子カーネルアルゴリズムを用いた量子機械学習のマルチクラスニューロンM型分類への応用
- Authors: Xavier Vasques, Hanhee Paik, Laura Cif,
- Abstract要約: この研究は、ニューロン形態を分類するための量子システムの利用を初めて提案した。
特徴工学が分類精度に与える影響を検討した結果,量子カーネル法は古典的手法と類似した性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The functional characterization of different neuronal types has been a longstanding and crucial challenge. With the advent of physical quantum computers, it has become possible to apply quantum machine learning algorithms to translate theoretical research into practical solutions. Previous studies have shown the advantages of quantum algorithms on artificially generated datasets, and initial experiments with small binary classification problems have yielded comparable outcomes to classical algorithms. However, it is essential to investigate the potential quantum advantage using real-world data. To the best of our knowledge, this study is the first to propose the utilization of quantum systems to classify neuron morphologies, thereby enhancing our understanding of the performance of automatic multiclass neuron classification using quantum kernel methods. We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods, with certain advantages observed in various configurations.
- Abstract(参考訳): 異なるニューロンタイプの機能的特徴は、長年にわたって重要な課題であった。
物理量子コンピュータの出現により、理論的研究を実用的な解に変換するために量子機械学習アルゴリズムを適用することが可能になった。
従来の研究では、人工的に生成されたデータセットに対する量子アルゴリズムの利点が示されており、小さなバイナリ分類問題の初期実験は古典的なアルゴリズムに匹敵する結果をもたらした。
しかし、実世界のデータを用いて潜在的な量子優位性を調べることが不可欠である。
本研究は,ニューロン形態を分類するための量子システムの利用を初めて提案し,量子カーネル法を用いた自動多クラスニューロン分類の性能の理解を深めるものである。
特徴工学が分類精度に与える影響を検討した結果、量子カーネル法は古典的手法と類似した性能を示し、様々な構成で一定の利点が見られた。
関連論文リスト
- Empirical Quantum Advantage Analysis of Quantum Kernel in Gene Expression Data [0.0]
量子優位性が達成可能な適切なデータセットを見つけることや、古典的および量子的手法によって選択された特徴の関連性を評価することなど、制約に重点を置いている。
生理的行動と疾患の感受性の制御において遺伝的変異が重要な役割を担った遺伝子発現データセットを実験的に選択した。
論文 参考訳(メタデータ) (2024-11-11T15:34:53Z) - Quantum machine learning for multiclass classification beyond kernel methods [21.23851138896271]
本稿では,実世界の応用において,量子カーネル法がマルチクラス分類の効率を高めることを示す量子アルゴリズムを提案する。
量子シミュレーションの結果は、量子アルゴリズムが6つの実世界のマルチクラス分類問題に対処する際の古典的手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-11-05T08:58:30Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
カーネルメソッドは古典的な機械学習において強力で一般的なテクニックである。
量子コンピュータ上でしか効率的に計算できない量子特徴空間を使用することで、量子上の優位性を導出することができる。
データ依存型投影量子カーネルは、古典的カーネルに対して大きな利点をもたらすことが示されている。
論文 参考訳(メタデータ) (2024-05-02T23:45:29Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Pooling techniques in hybrid quantum-classical convolutional neural
networks [0.0]
2次元医用画像の分類のためのハイブリッド量子古典畳み込みニューラルネットワーク(QCCNN)におけるプーリング手法の詳細な研究を行う。
プールのない等価な古典モデルやQCCNNと比較すると,類似性や性能が向上する。
QCCNNにおけるアーキテクチャの選択を、将来のアプリケーションのためにより深く研究することを約束している。
論文 参考訳(メタデータ) (2023-05-09T16:51:46Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
本稿では,ネットワークのパラメータを最適化するために,量子勾配降下法と急勾配降下法を組み合わせた新しいハイブリッド型変分量子分類器を提案する。
このアルゴリズムは、古典的ニューラルネットワークや、量子最適化法で訓練された量子機械学習法よりも優れた学習結果が得られる。
論文 参考訳(メタデータ) (2020-10-14T18:05:49Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。