論文の概要: Energy Dissipation Preserving Physics Informed Neural Network for Allen-Cahn Equations
- arxiv url: http://arxiv.org/abs/2411.08760v1
- Date: Wed, 13 Nov 2024 16:47:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:54.814834
- Title: Energy Dissipation Preserving Physics Informed Neural Network for Allen-Cahn Equations
- Title(参考訳): アレン-カーン方程式の物理情報ニューラルネットワークを用いたエネルギー散逸保存
- Authors: Mustafa Kütük, Hamdullah Yücel,
- Abstract要約: 本稿では, 物理インフォームドニューラルネットワーク(PINN)に基づく, 定数および退化運動量, 対数エネルギー関数, 決定的およびランダムな初期関数, 1, 2, 3次元の対流項を持つアレン・カーン方程式の数値解について検討する。
PINNの学習能力を向上させるため,ネットワークの損失関数にペナルティ項としてアレン・カーン方程式のエネルギー散逸特性を組み込む。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper investigates a numerical solution of Allen-Cahn equation with constant and degenerate mobility, with polynomial and logarithmic energy functionals, with deterministic and random initial functions, and with advective term in one, two, and three spatial dimensions, based on the physics-informed neural network (PINN). To improve the learning capacity of the PINN, we incorporate the energy dissipation property of the Allen-Cahn equation as a penalty term into the loss function of the network. To facilitate the learning process of random initials, we employ a continuous analogue of the initial random condition by utilizing the Fourier series expansion. Adaptive methods from traditional numerical analysis are also integrated to enhance the effectiveness of the proposed PINN. Numerical results indicate a consistent decrease in the discrete energy, while also revealing phenomena such as phase separation and metastability.
- Abstract(参考訳): 本稿では, 物理インフォームドニューラルネットワーク(PINN)に基づいて, 定数および退化運動量, 多項式および対数エネルギー関数, 決定的およびランダムな初期関数, 1, 2, 3次元の対流項を持つアレン・カーン方程式の数値解について検討する。
PINNの学習能力を向上させるため,ネットワークの損失関数にペナルティ項としてアレン・カーン方程式のエネルギー散逸特性を組み込む。
ランダムな初期化の学習プロセスを容易にするために,フーリエ級数展開を利用して初期乱数条件の連続的なアナログを用いる。
従来の数値解析からの適応手法も統合され,提案したPINNの有効性が向上する。
数値計算の結果、離散エネルギーは一貫して減少し、相分離や転移性などの現象も明らかとなった。
関連論文リスト
- Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Efficient Bayesian inference using physics-informed invertible neural
networks for inverse problems [6.97393424359704]
物理インフォームド・インバータブルニューラルネットワーク(PI-INN)を利用したベイズ逆問題に対する革新的なアプローチを提案する。
PI-INNはベイズ逆問題に対して正確かつ効率的な生成モデルを提供し、抽出可能な後部密度推定をもたらす。
特定の物理インフォームドディープラーニングモデルとして、PI-INNの主要なトレーニング課題は独立性制約の強化である。
論文 参考訳(メタデータ) (2023-04-25T03:17:54Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、最近、前方および逆問題の両方を解決する能力により、多くの注目を集めている。
そこで我々は, PINN の高次積分法を用いて, 硬質化学動力学を解ける新しい PINN アーキテクチャ, Reduced-PINN を提案する。
論文 参考訳(メタデータ) (2022-08-23T09:20:42Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Learning topological defects formation with neural networks in a quantum
phase transition [0.0]
一次元横場量子イジングモデルにおける位相的欠陥の時間進化、普遍統計、相関について検討する。
キンク数の最初の3つの累積とクエンチ率の間に普遍的な力-法則関係を確立し、キンクの二項分布を示す。
最後に、正規化されたキンクキンク相関についても検討し、解析式と数値が一致していることを見出した。
論文 参考訳(メタデータ) (2022-04-14T06:00:19Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。