Compression Method for Solar Polarization Spectra Collected from Hinode SOT/SP Observations
- URL: http://arxiv.org/abs/2411.09311v1
- Date: Thu, 14 Nov 2024 09:38:41 GMT
- Title: Compression Method for Solar Polarization Spectra Collected from Hinode SOT/SP Observations
- Authors: Jargalmaa Batmunkh, Yusuke Iida, Takayoshi Oba, Haruhisa Iijima,
- Abstract summary: We propose a deep learning-based compression technique using deep autoencoder (DAE) and 1D-convolutional autoencoder (CAE) models developed with Hinode SOT/SP data.
We focused on compressing Stokes I and V polarization spectra from the quiet Sun, as well as from active regions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complex structure and extensive details of solar spectral data, combined with a recent surge in volume, present significant processing challenges. To address this, we propose a deep learning-based compression technique using deep autoencoder (DAE) and 1D-convolutional autoencoder (CAE) models developed with Hinode SOT/SP data. We focused on compressing Stokes I and V polarization spectra from the quiet Sun, as well as from active regions, providing a novel insight into comprehensive spectral analysis by incorporating spectra from extreme magnetic fields. The results indicate that the CAE model outperforms the DAE model in reconstructing Stokes profiles, demonstrating greater robustness and achieving reconstruction errors around the observational noise level. The proposed method has proven effective in compressing Stokes I and V spectra from both the quiet Sun and active regions, highlighting its potential for impactful applications in solar spectral analysis, such as detection of unusual spectral signals.
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.
variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.
We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Autoencoder-Based Detection of Anomalous Stokes V Spectra in the Flare-Producing Active Region 13663 Using Hinode/SP Observations [0.0]
We develop an autoencoder model for spectral compression, which serves as an anomaly detection method.
Our model effectively identifies anomalous spectra within spectro-polarimetric maps captured prior to the onset of the X1.3 flare.
Notably, the detected anomalies are highly localized, making them particularly challenging to identify in magnetogram images.
arXiv Detail & Related papers (2025-04-08T12:20:47Z) - Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
arXiv Detail & Related papers (2024-07-05T13:45:11Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
Deep-Regularized Ensemble-based Multi-task Learning with Asymmetric Loss for Probabilistic Inference ($rmdeep-REMAP$)
We develop a novel framework that utilizes the rich synthetic spectra from the PHOENIX library and observational data from the MARVELS survey to accurately predict stellar atmospheric parameters.
arXiv Detail & Related papers (2023-11-07T05:41:48Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Spatial-Spectral Manifold Embedding of Hyperspectral Data [43.479889860715275]
We propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information.
spatial-spectral manifold embedding (SSME) models the spatial and spectral information jointly in a patch-based fashion.
SSME not only learns the spectral embedding by using the adjacency matrix obtained by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral scene.
arXiv Detail & Related papers (2020-07-17T05:40:27Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.