論文の概要: Physics-informed neural networks (PINNs) for numerical model error approximation and superresolution
- arxiv url: http://arxiv.org/abs/2411.09728v1
- Date: Thu, 14 Nov 2024 17:03:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:01.480077
- Title: Physics-informed neural networks (PINNs) for numerical model error approximation and superresolution
- Title(参考訳): 数値モデル誤差近似と超解像のための物理インフォームドニューラルネットワーク(PINN)
- Authors: Bozhou Zhuang, Sashank Rana, Brandon Jones, Danny Smyl,
- Abstract要約: 数値モデル誤差の同時近似と超解像のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、予測と基底真理の差が小さいxとyの変位場のモデル誤差を効果的に予測する。
この結果から,物理インフォームド・ロス関数の統合により,ニューラルネットワーク(NN)が純粋にデータ駆動型アプローチを超越してモデル誤差を近似できることが示唆された。
- 参考スコア(独自算出の注目度): 3.4393226199074114
- License:
- Abstract: Numerical modeling errors are unavoidable in finite element analysis. The presence of model errors inherently reflects both model accuracy and uncertainty. To date there have been few methods for explicitly quantifying errors at points of interest (e.g. at finite element nodes). The lack of explicit model error approximators has been addressed recently with the emergence of machine learning (ML), which closes the loop between numerical model features/solutions and explicit model error approximations. In this paper, we propose physics-informed neural networks (PINNs) for simultaneous numerical model error approximation and superresolution. To test our approach, numerical data was generated using finite element simulations on a two-dimensional elastic plate with a central opening. Four- and eight-node quadrilateral elements were used in the discretization to represent the reduced-order and higher-order models, respectively. It was found that the developed PINNs effectively predict model errors in both x and y displacement fields with small differences between predictions and ground truth. Our findings demonstrate that the integration of physics-informed loss functions enables neural networks (NNs) to surpass a purely data-driven approach for approximating model errors.
- Abstract(参考訳): 有限要素解析では数値モデリング誤差は避けられない。
モデル誤差の存在は、本質的にモデル精度と不確実性の両方を反映している。
今のところ、興味のある点(例えば有限要素ノード)でエラーを明示的に定量化する方法はほとんどない。
明示的なモデル誤差近似器の欠如は、数値モデルの特徴/解決と明示的なモデル誤差近似とのループを閉じる機械学習(ML)の出現によって最近解決された。
本稿では,数値モデル誤差の同時近似と超解像のための物理インフォームドニューラルネットワーク(PINN)を提案する。
本研究では, 中心開口を有する2次元弾性板上の有限要素シミュレーションを用いて数値データを作成した。
4ノードと8ノードの四辺要素は、それぞれ低次モデルと高次モデルを表すために離散化に使用された。
その結果, 提案したPINNは, x と y の変位場におけるモデル誤差を予測できることがわかった。
この結果から,物理インフォームド・ロス関数の統合により,ニューラルネットワーク(NN)が純粋にデータ駆動型アプローチを超越してモデル誤差を近似できることが示唆された。
関連論文リスト
- Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
生成モデルにおけるディープニューラルネットワークによるスコア関数の近似効率について検討する。
楽譜関数はしばしば変分推論法を用いてグラフィカルモデルでよく近似される。
深層ニューラルネットワークによってスコア関数が学習されるとき,拡散に基づく生成モデルに縛られた効率的なサンプル複雑性を提供する。
論文 参考訳(メタデータ) (2023-09-20T15:51:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements [0.0]
深部電磁法(EM)測定における深部学習モデルの近似特性と関連するモデル誤差の影響について検討した。
フォワードモデルとしてディープニューラルネットワーク(DNN)を使用することで、数秒で数千のモデル評価を実行できます。
本稿では, モデル誤差を無視しながら, EM測定の逆転に伴う問題を明らかにする数値計算結果を提案する。
論文 参考訳(メタデータ) (2022-05-25T11:44:48Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
私たちはMEDIDAというフレームワークを紹介します: 解釈可能性とデータ同化を伴うモデルエラー発見。
MEDIDAでは、まず、観測状態と予測状態の差からモデル誤差を推定する。
観測結果がノイズである場合、まず、アンサンブルカルマンフィルタ(EnKF)のようなデータ同化手法を用いて、システムのノイズフリー解析状態を提供する。
最後に、レバレンスベクトルマシン(RVM)のような方程式発見手法、すなわちスパーシィプロモーティングベイズ法を用いて、解釈可能でパシモニアスでクローズドな解を同定する。
論文 参考訳(メタデータ) (2021-10-01T17:19:28Z) - Combining data assimilation and machine learning to estimate parameters
of a convective-scale model [0.0]
対流を許容する数値気象予測モデルにおける雲の表現の誤差は、異なる情報源によって導入することができる。
本研究では,2種類のニューラルネットワークをトレーニングすることにより,人工知能レンズによるパラメータ推定の問題を検討する。
論文 参考訳(メタデータ) (2021-09-07T09:17:29Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Stochastic analysis of heterogeneous porous material with modified
neural architecture search (NAS) based physics-informed neural networks using
transfer learning [0.0]
修正ニューラルアーキテクチャ探索法(NAS)に基づく物理インフォームド深層学習モデルを提案する。
高度不均質帯水層における地下水流動シミュレーションのベンチマークを行うため, 三次元流れモデルを構築した。
論文 参考訳(メタデータ) (2020-10-03T19:57:54Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。