論文の概要: Exploring Eye Tracking to Detect Cognitive Load in Complex Virtual Reality Training
- arxiv url: http://arxiv.org/abs/2411.12771v1
- Date: Mon, 18 Nov 2024 16:44:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:11:47.309601
- Title: Exploring Eye Tracking to Detect Cognitive Load in Complex Virtual Reality Training
- Title(参考訳): 複雑なバーチャルリアリティトレーニングにおける認知負荷検出のための視線追跡の探索
- Authors: Mahsa Nasri, Mehmet Kosa, Leanne Chukoskie, Mohsen Moghaddam, Casper Harteveld,
- Abstract要約: 視線追跡に基づく機械学習手法を用いて、ユーザの認知負荷を検出するための研究が進行中である。
寒冷噴霧のためのVRトレーニングシステムを開発し,22名の被験者を対象に実験を行った。
予備分析は、複雑なVR体験における認知負荷を検出するためにアイトラッキングを使用することの可能性を示している。
- 参考スコア(独自算出の注目度): 11.83314968015781
- License:
- Abstract: Virtual Reality (VR) has been a beneficial training tool in fields such as advanced manufacturing. However, users may experience a high cognitive load due to various factors, such as the use of VR hardware or tasks within the VR environment. Studies have shown that eye-tracking has the potential to detect cognitive load, but in the context of VR and complex spatiotemporal tasks (e.g., assembly and disassembly), it remains relatively unexplored. Here, we present an ongoing study to detect users' cognitive load using an eye-tracking-based machine learning approach. We developed a VR training system for cold spray and tested it with 22 participants, obtaining 19 valid eye-tracking datasets and NASA-TLX scores. We applied Multi-Layer Perceptron (MLP) and Random Forest (RF) models to compare the accuracy of predicting cognitive load (i.e., NASA-TLX) using pupil dilation and fixation duration. Our preliminary analysis demonstrates the feasibility of using eye tracking to detect cognitive load in complex spatiotemporal VR experiences and motivates further exploration.
- Abstract(参考訳): VR(Virtual Reality)は、先進的な製造などの分野において有益なトレーニングツールである。
しかし、VRハードウェアの使用やVR環境内のタスクなど、さまざまな要因により、ユーザーは高い認知負荷を経験することができる。
研究により、視線追跡は認知負荷を検出する可能性があることが示されているが、VRや複雑な時空間的タスク(組立や分解など)の文脈では、まだ明らかにされていない。
本稿では、視線追跡に基づく機械学習アプローチを用いて、ユーザの認知負荷を検出するための継続的な研究について述べる。
寒冷噴霧のためのVRトレーニングシステムを開発し,22名の被験者でテストし,19名の有効な視線追跡データセットとNASA-TLXスコアを得た。
マルチレイヤ・パーセプトロン(MLP)とランダムフォレスト(RF)モデルを用いて,瞳孔拡張と固定期間を用いて認知負荷(NASA-TLX)の予測精度を比較した。
我々の予備分析は、複雑な時空間VR体験における認知負荷を検出し、さらなる探索を動機付けるために、視線追跡を用いることの可能性を示している。
関連論文リスト
- Mazed and Confused: A Dataset of Cybersickness, Working Memory, Mental Load, Physical Load, and Attention During a Real Walking Task in VR [11.021668923244803]
認知活動、身体活動、およびサイバーシックネスの親しみやすい感情との関係はよく理解されていない。
頭部の向き,頭部の位置,視線追跡,画像,外部センサーからの生理的読影,自己報告されたサイバーシック度,身体負荷,心的負荷をVRで収集した。
論文 参考訳(メタデータ) (2024-09-10T22:41:14Z) - Tremor Reduction for Accessible Ray Based Interaction in VR Applications [0.0]
多くの従来の2Dインタフェースのインタラクション方法は、入力機構にほとんど変更を加えることなく、VR空間で直接動作するように変換されている。
本稿では,低域通過フィルタを用いてユーザ入力ノイズの正規化を行い,光線による相互作用におけるモータの細かな要求を緩和する手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T17:07:16Z) - Thelxinoë: Recognizing Human Emotions Using Pupillometry and Machine Learning [0.0]
本研究は,現実的かつ感情的に共鳴するタッチインタラクションのための複数のセンサデータを統合することで,VR体験の向上を目的とした,Thelxino"eフレームワークに大きく貢献する。
我々の発見は、没入的でインタラクティブなVR環境を開発するための新しい道を開き、バーチャルタッチ技術の将来の進歩への道を開いた。
論文 参考訳(メタデータ) (2024-03-27T21:14:17Z) - Neural feels with neural fields: Visuo-tactile perception for in-hand
manipulation [57.60490773016364]
マルチフィンガーハンドの視覚と触覚を組み合わせることで,手動操作時の物体の姿勢と形状を推定する。
提案手法であるNeuralFeelsは,ニューラルネットワークをオンラインで学習することでオブジェクトの形状を符号化し,ポーズグラフ問題を最適化して共同で追跡する。
私たちの結果は、タッチが少なくとも、洗練され、そして最も最良のものは、手動操作中に視覚的推定を曖昧にすることを示しています。
論文 参考訳(メタデータ) (2023-12-20T22:36:37Z) - 3D Gaze Vis: Sharing Eye Tracking Data Visualization for Collaborative
Work in VR Environment [3.3130410344903325]
私たちは、視線カーソル、視線スポットライト、視線軌跡の3つの異なる視線追跡データ可視化を、人間の心臓のコースのためにVRシーンで設計しました。
医師の視線カーソルは、複雑な3D心臓モデルをより効果的に学習するのに役立ちます。
その結果,視線追跡データの視覚化により,VR環境における協調作業の品質と効率が向上することが示唆された。
論文 参考訳(メタデータ) (2023-03-19T12:00:53Z) - Virtual-Reality based Vestibular Ocular Motor Screening for Concussion
Detection using Machine-Learning [0.0]
スポーツ関連脳梗塞(SRC)は視覚・前庭・体性感覚系の感覚情報に依存する。
現在,Vestibular/Ocular Motor Screening (VOMS) を施行中である。
技術の進歩により、VOMSの標準化を進めるためにバーチャルリアリティ(VR)を利用することができる。
論文 参考訳(メタデータ) (2022-10-13T02:09:21Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
我々はVR/ARにおける自然的および直感的な力入力のための学習ベースのニューラルネットワークを設計する。
我々は,3.3%の平均誤差で指の力量をリアルタイムでデコードし,キャリブレーションの少ない新規ユーザに一般化できることを実証した。
今後のVR/ARにおける、より現実的な物理性に向けた研究を進めるために、我々の研究成果を期待する。
論文 参考訳(メタデータ) (2022-10-03T20:51:25Z) - Learning Effect of Lay People in Gesture-Based Locomotion in Virtual
Reality [81.5101473684021]
最も有望な方法はジェスチャーベースであり、追加のハンドヘルドハードウェアを必要としない。
最近の研究は、主に異なるロコモーションテクニックのユーザの好みとパフォーマンスに焦点を当てている。
本研究は,VRにおける手のジェスチャーに基づくロコモーションシステムへの適応の迅速さについて検討した。
論文 参考訳(メタデータ) (2022-06-16T10:44:16Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Evaluating Continual Learning Algorithms by Generating 3D Virtual
Environments [66.83839051693695]
連続学習とは、人間や動物が特定の環境で徐々に学習する能力である。
本稿では3次元仮想環境の最近の進歩を活用して,フォトリアリスティックな外観を持つ潜在的に長寿命な動的シーンの自動生成にアプローチすることを提案する。
本論文の新たな要素は、シーンがパラメトリックな方法で記述され、エージェントが知覚する入力ストリームの視覚的複雑さを完全に制御できることである。
論文 参考訳(メタデータ) (2021-09-16T10:37:21Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。