論文の概要: DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback
- arxiv url: http://arxiv.org/abs/2411.14157v1
- Date: Wed, 20 Nov 2024 01:21:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:18:20.761173
- Title: DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback
- Title(参考訳): DrugGen: 大規模言語モデルによる薬物発見の促進と強化学習フィードバック
- Authors: Mahsa Sheikholeslami, Navid Mazrouei, Yousof Gheisari, Afshin Fasihi, Matin Irajpour, Ali Motahharynia,
- Abstract要約: DrugGen は DrugGPT 構造に基づく拡張モデルである。
承認された薬物と標的の相互作用を微調整し、近似ポリシー最適化に最適化されている。
高品質の小さな分子を生産することで、薬学研究と薬物発見を進めるための高性能な媒体を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Traditional drug design faces significant challenges due to inherent chemical and biological complexities, often resulting in high failure rates in clinical trials. Deep learning advancements, particularly generative models, offer potential solutions to these challenges. One promising algorithm is DrugGPT, a transformer-based model, that generates small molecules for input protein sequences. Although promising, it generates both chemically valid and invalid structures and does not incorporate the features of approved drugs, resulting in time-consuming and inefficient drug discovery. To address these issues, we introduce DrugGen, an enhanced model based on the DrugGPT structure. DrugGen is fine-tuned on approved drug-target interactions and optimized with proximal policy optimization. By giving reward feedback from protein-ligand binding affinity prediction using pre-trained transformers (PLAPT) and a customized invalid structure assessor, DrugGen significantly improves performance. Evaluation across multiple targets demonstrated that DrugGen achieves 100% valid structure generation compared to 95.5% with DrugGPT and produced molecules with higher predicted binding affinities (7.22 [6.30-8.07]) compared to DrugGPT (5.81 [4.97-6.63]) while maintaining diversity and novelty. Docking simulations further validate its ability to generate molecules targeting binding sites effectively. For example, in the case of fatty acid-binding protein 5 (FABP5), DrugGen generated molecules with superior docking scores (FABP5/11, -9.537 and FABP5/5, -8.399) compared to the reference molecule (Palmitic acid, -6.177). Beyond lead compound generation, DrugGen also shows potential for drug repositioning and creating novel pharmacophores for existing targets. By producing high-quality small molecules, DrugGen provides a high-performance medium for advancing pharmaceutical research and drug discovery.
- Abstract(参考訳): 従来の薬物設計は、化学的、生物学的に複雑であり、しばしば臨床試験で高い失敗率をもたらすため、重大な課題に直面している。
ディープラーニングの進歩、特に生成モデルは、これらの課題に対する潜在的な解決策を提供する。
1つの有望なアルゴリズムは、入力タンパク質配列の小さな分子を生成するトランスフォーマーベースのモデルであるD薬GPTである。
有望ではあるが、化学的に有効な構造と無効な構造の両方を生成し、承認された薬物の特徴を組み込まないため、時間のかかる薬物発見と非効率な薬物発見をもたらす。
これらの課題に対処するために,DragonGPT構造に基づく拡張モデルであるDragonGenを紹介する。
DrugGenは承認された薬物と標的の相互作用を微調整し、近位ポリシー最適化に最適化されている。
タンパク質-リガンド結合親和性予測 (PLAPT) とカスタマイズ無効構造評価器を用いて, タンパク質-リガンド結合親和性予測から報奨フィードバックを得ることにより, 性能を著しく向上させる。
複数の標的に対して評価したところ、DragonGenは95.5%と比較して100%有効な構造生成を達成し、予測される結合親和性(7.22[6.30-8.07])の高い分子を創出し、多様性と新規性を保ちながら5.81[4.97-6.63])と比較した。
ドッキングシミュレーションは、結合部位を標的とする分子を効果的に生成する能力をさらに検証する。
例えば、脂肪酸結合タンパク質5(FABP5)の場合、DragonGenは基準分子(Palmitic acid, -6.177)と比較して優れたドッキングスコア(FABP5/11, -9.537, FABP5/5, -8.399)を持つ分子を生成する。
鉛化合物生成の他に、DragonGenは、既存の標的に対する新しい薬局の配置と創薬の可能性も示している。
高品質の小さな分子を生産することで、薬学研究と薬物発見を進めるための高性能な媒体を提供する。
関連論文リスト
- DrugImproverGPT: A Large Language Model for Drug Optimization with Fine-Tuning via Structured Policy Optimization [53.27954325490941]
大規模言語モデル(LLM)の微調整は、特定の目的に向けて結果を生成するために不可欠である。
本研究は,薬物最適化LSMに基づく生成モデルを微調整するための新しい強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-11T04:00:21Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
目標IC50スコアに基づく条件生成により、より効率的なサンプリングスペースを得ることができる。
回帰自由誘導は、拡散モデルのスコア推定と、数値ラベルに基づく回帰制御モデルの勾配を結合する。
論文 参考訳(メタデータ) (2024-05-23T13:22:17Z) - drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGATは、薬物に対する感受性を予測するグラフ深層学習モデルである。
drGATは既存のモデルよりも優れた性能を示し、精度は78%、F1スコアは76%、DNA損傷物質は269である。
本手法は薬剤感受性を正確に予測するために有用であり,がん患者の治療に関するバイオマーカーの同定に有用である。
論文 参考訳(メタデータ) (2024-05-14T22:16:52Z) - Improving Targeted Molecule Generation through Language Model Fine-Tuning Via Reinforcement Learning [0.0]
我々は,特定のタンパク質を標的とした薬物を設計する言語モデルの能力を活用する,革新的なデノボドラッグデザイン戦略を導入する。
本手法は, 薬物-標的相互作用と分子的妥当性を考慮した複合報酬関数を統合する。
論文 参考訳(メタデータ) (2024-05-10T22:19:12Z) - Energy-based Generative Models for Target-specific Drug Discovery [7.509129971169722]
我々は, 目標特異的な薬物発見のためのエネルギーベース確率モデルを開発した。
その結果,提案したTagMolは実分子と類似の結合親和性を持つ分子を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-12-05T16:41:36Z) - Drug-target affinity prediction method based on consistent expression of
heterogeneous data [0.0]
深層学習モデルを用いた薬物-標的結合親和性予測手法を提案する。
提案モデルでは,DAVISおよびKIBAデータセット上での薬物-標的結合親和性予測の精度と有効性を示す。
論文 参考訳(メタデータ) (2022-11-13T02:58:03Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
標的タンパク質の構造に基づくデノボ薬物の設計は、新規な薬物候補を提供することができる。
そこで本研究では,特定のターゲットに対して,対象薬物をスクラッチから直接生成できるTamGentという生成ソリューションを提案する。
論文 参考訳(メタデータ) (2022-08-30T09:32:39Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning [61.74958429818077]
MolDesignerは、ドラッグ開発者のためのヒューマン・イン・ザ・ループ・ウェブ・ユーザ・インタフェース(UI)である。
開発者は、インターフェイスに薬物分子を描画することができる。
バックエンドでは、17以上の最先端のDLモデルが、薬物の有効性に不可欠な重要な指標の予測を生成する。
論文 参考訳(メタデータ) (2020-10-05T21:25:25Z) - CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
Deep Generative Models [74.58583689523999]
新規なウイルスタンパク質を標的とした新規な薬物様小分子を設計するためのエンド・ツー・エンドのフレームワークであるCogMolを提案する。
CogMolは、分子SMILES変分オートエンコーダ(VAE)の適応事前学習と、効率的なマルチ属性制御サンプリングスキームを組み合わせる。
CogMolは、高目標特異性と選択性を有する合成可能で低毒性な薬物様分子の多制約設計を扱う。
論文 参考訳(メタデータ) (2020-04-02T18:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。