Simulation of two-dimensional electronic spectroscopy on a near-term quantum computer using a probe qubit protocol
- URL: http://arxiv.org/abs/2411.16290v1
- Date: Mon, 25 Nov 2024 11:13:57 GMT
- Title: Simulation of two-dimensional electronic spectroscopy on a near-term quantum computer using a probe qubit protocol
- Authors: José D. Guimarães, James Lim, Mikhail I. Vasilevskiy, Susana F. Huelga, Martin B. Plenio,
- Abstract summary: Two-dimensional electronic spectroscopy (2DES) is a powerful tool for exploring quantum effects in energy transport within photosynthetic systems and investigating novel material properties.
simulating the dynamics of these experiments poses significant challenges for classical computers due to the large system sizes and long timescales involved.
This paper introduces the probe qubit protocol (PQP)-for quantum simulation of 2DES on near-term quantum devices.
- Score: 0.6990493129893112
- License:
- Abstract: Two-dimensional electronic spectroscopy (2DES) is a powerful tool for exploring quantum effects in energy transport within photosynthetic systems and investigating novel material properties. However, simulating the dynamics of these experiments poses significant challenges for classical computers due to the large system sizes and long timescales involved. This paper introduces the probe qubit protocol (PQP)-for quantum simulation of 2DES on near-term quantum devices-addressing these challenges. The PQP offers several enhancements over standard methods, notably reducing computational resources by requiring only a single-qubit measurement per circuit run and achieving Heisenberg scaling in detection frequency resolution, without the need to apply expensive controlled evolution operators in the quantum circuit. The implementation of the PQP protocol requires only one additional ancilla qubit, the probe qubit, with one-to-all connectivity and two-qubit interactions between each system and probe qubits. We evaluate the computational resources necessary for this protocol in detail, demonstrating its function as a dynamic frequency-filtering method through numerical simulations. We find that simulations of the PQP on classical and quantum computers enable a reduction on the number of measurements, i.e. simulation runtime, and memory savings of several orders of magnitude relatively to standard quantum simulation protocols of 2DES. The paper discusses the applicability of the PQP on near-term quantum devices and highlights potential applications where this spetroscopy simulation protocol could provide significant speedups over standard approaches such as the quantum simulation of 2DES applied to the Fenna-Matthews-Olson (FMO) complex in green sulphur bacteria.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
arXiv Detail & Related papers (2021-05-28T06:37:12Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.