論文の概要: NeoHebbian Synapses to Accelerate Online Training of Neuromorphic Hardware
- arxiv url: http://arxiv.org/abs/2411.18272v1
- Date: Wed, 27 Nov 2024 12:06:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:25.264843
- Title: NeoHebbian Synapses to Accelerate Online Training of Neuromorphic Hardware
- Title(参考訳): NeoHebbian Synapsesによるニューロモルフィックハードウェアのオンライントレーニングの高速化
- Authors: Shubham Pande, Sai Sukruth Bezugam, Tinish Bhattacharya, Ewelina Wlazlak, Anjan Chakaravorty, Bhaswar Chakrabarti, Dmitri Strukov,
- Abstract要約: ReRAMデバイスを用いた新しいネオヘビアン人工シナプスが提案され、実験的に検証されている。
様々なデバイスやシステムレベルの非理想を考慮に入れたシステムレベルのシミュレーションは、これらのシナプスがニューロモルフィックハードウェアにおける高度な学習規則の高速でコンパクトでエネルギー効率の高い実装に堅牢なソリューションを提供することを確認した。
- 参考スコア(独自算出の注目度): 0.03377254151446239
- License:
- Abstract: Neuromorphic systems that employ advanced synaptic learning rules, such as the three-factor learning rule, require synaptic devices of increased complexity. Herein, a novel neoHebbian artificial synapse utilizing ReRAM devices has been proposed and experimentally validated to meet this demand. This synapse features two distinct state variables: a neuron coupling weight and an "eligibility trace" that dictates synaptic weight updates. The coupling weight is encoded in the ReRAM conductance, while the "eligibility trace" is encoded in the local temperature of the ReRAM and is modulated by applying voltage pulses to a physically co-located resistive heating element. The utility of the proposed synapse has been investigated using two representative tasks: first, temporal signal classification using Recurrent Spiking Neural Networks (RSNNs) employing the e-prop algorithm, and second, Reinforcement Learning (RL) for path planning tasks in feedforward networks using a modified version of the same learning rule. System-level simulations, accounting for various device and system-level non-idealities, confirm that these synapses offer a robust solution for the fast, compact, and energy-efficient implementation of advanced learning rules in neuromorphic hardware.
- Abstract(参考訳): 3要素学習規則のような先進的なシナプス学習規則を採用するニューロモルフィックシステムは、複雑さが増大するシナプスデバイスを必要とする。
そこで, この要求を満たすために, ReRAM デバイスを用いた新ヘビーンの人工シナプスが提案され, 実験的に検証されている。
このシナプスは2つの異なる状態変数、ニューロンの結合重みとシナプスの重み更新を規定する「良性トレース」を特徴とする。
カップリングウェイトはReRAMコンダクタンスに符号化され、一方、ReRAMの局所温度で「良性トレース」が符号化され、物理的に同一位置の抵抗加熱素子に電圧パルスを印加して変調される。
提案手法の有効性は,e-propアルゴリズムを用いた時間信号分類と,同じ学習規則の修正版を用いたフィードフォワードネットワークにおける経路計画タスクのための強化学習(RL)の2つの代表的なタスクを用いて検討されている。
様々なデバイスやシステムレベルの非理想を考慮に入れたシステムレベルのシミュレーションは、これらのシナプスがニューロモルフィックハードウェアにおける高度な学習規則の高速でコンパクトでエネルギー効率の高い実装に堅牢なソリューションを提供することを確認した。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Integrating programmable plasticity in experiment descriptions for analog neuromorphic hardware [0.9217021281095907]
BrainScaleS-2のニューロモルフィックアーキテクチャは「ハイブリッド」可塑性をサポートするように設計されている。
シナプス間相関測定などの数値シミュレーションで高価な観測機器はシナプス回路に直接実装される。
我々は高レベルな実験記述言語でスパイキングニューラルネットワーク実験と塑性規則を記述するための統合フレームワークを導入する。
論文 参考訳(メタデータ) (2024-12-04T08:46:06Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Neuromorphic Hebbian learning with magnetic tunnel junction synapses [41.92764939721262]
磁気トンネル接合(MTJ)の双対抵抗状態による高精度推論を実現するニューロモルフィックネットワークの提案と実験的検討を行った。
MTJシナプスで直接実装したニューロモルフィックネットワークの最初の実演を行った。
また,STT-MTJシナプスを用いた非教師型ヘビアン学習システムにより,MNIST手書き文字認識の競争精度が向上できることをシミュレーションにより実証した。
論文 参考訳(メタデータ) (2023-08-21T19:58:44Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Spatiotemporal Spike-Pattern Selectivity in Single Mixed-Signal Neurons
with Balanced Synapses [0.27998963147546135]
混合信号ニューロモルフィックプロセッサは推論と学習に使用できる。
ネットワーク層の実装に不均一なシナプス回路をいかに利用できるかを示す。
論文 参考訳(メタデータ) (2021-06-10T12:04:03Z) - An error-propagation spiking neural network compatible with neuromorphic
processors [2.432141667343098]
本稿では,局所的な重み更新機構を用いたバックプロパゲーションを近似したスパイクに基づく学習手法を提案する。
本稿では,重み更新機構による誤り信号のバックプロパゲートを可能にするネットワークアーキテクチャを提案する。
この研究は、超低消費電力混合信号ニューロモルフィック処理系の設計に向けた第一歩である。
論文 参考訳(メタデータ) (2021-04-12T07:21:08Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。