論文の概要: Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives
- arxiv url: http://arxiv.org/abs/2412.00578v1
- Date: Sat, 30 Nov 2024 20:25:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:48.585165
- Title: Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives
- Title(参考訳): Speedy-Splat:スパースレンズとスパースプリミティブを用いた高速3Dガウス撮影
- Authors: Alex Hanson, Allen Tu, Geng Lin, Vasu Singla, Matthias Zwicker, Tom Goldstein,
- Abstract要約: 3D Gaussian Splatting (3D-GS)は、3D Gaussian のパラメトリック点雲としてシーンをモデル化することで、新しいビューをリアルタイムにレンダリングすることのできる最近の3Dシーン再構築技術である。
3D-GSでは,レンダリング速度,モデルサイズ,トレーニング時間の大幅な改善を実現し,2つの重要な非効率性に対処する。
我々のSpeedy-Splatアプローチはこれらのテクニックを組み合わせることで、Mip-NeRF 360、Tamps & Temples、Deep Blendingのデータセットから、平均レンダリング速度を6.71ドル(約6万6000円)で加速します。
- 参考スコア(独自算出の注目度): 60.217580865237835
- License:
- Abstract: 3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS, achieving substantial improvements in rendering speed, model size, and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $6.71\times$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets with $10.6\times$ fewer primitives than 3D-GS.
- Abstract(参考訳): 3D Gaussian Splatting (3D-GS)は、3D Gaussian のパラメトリック点雲としてシーンをモデル化することで、新しいビューをリアルタイムにレンダリングすることのできる最近の3Dシーン再構築技術である。
しかしながら、レンダリング速度とモデルサイズは、特にリソース制約のある設定でボトルネックを発生させる。
本稿では,3D-GSにおける2つの重要な非効率性を特定し,レンダリング速度,モデルサイズ,トレーニング時間を大幅に改善する。
まず、シーン内のガウスを正確にローカライズするためにレンダリングパイプラインを最適化し、視覚的忠実度を変化させることなくレンダリング速度を向上する。
第2に、新しいプルーニング手法を導入し、トレーニングパイプラインに統合し、モデルのサイズとトレーニング時間を著しく短縮し、レンダリング速度をさらに向上させる。
われわれのSpeedy-Splatアプローチはこれらの技術を組み合わせて、Mip-NeRF 360, Tanks & Temples, Deep Blendingのデータセットを3D-GSより少ないプリミティブで10.6\times$で、合計6.71\times$で平均レンダリング速度を加速する。
関連論文リスト
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3次元ガウススプラッティングは、新規なビュー合成のレンダリング速度を大幅に高速化した。
3D Gaussian Splattingの明示的な表現は、動的再構成、幾何学的編集、物理シミュレーションなどの編集作業を容易にする。
本稿では,3次元再構成,3次元編集,その他の下流アプリケーションに大まかに分類できる最近の3次元ガウス散乱法について,文献的考察を行う。
論文 参考訳(メタデータ) (2024-03-17T07:57:08Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
論文 参考訳(メタデータ) (2024-02-27T11:40:50Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GSは、速度と画質の両方においてニューラル放射場(NeRF)を上回った新しいレンダリングアプローチである。
本研究では,現在のビューをレンダリングするために,不要な3次元ガウスをリアルタイムに識別する計算量削減手法を提案する。
Mip-NeRF360データセットの場合、提案手法は2次元画像投影の前に平均して3次元ガウスの63%を排除し、ピーク信号対雑音比(PSNR)を犠牲にすることなく全体のレンダリングを約38.3%削減する。
提案されたアクセラレータは、GPUと比較して10.7倍のスピードアップも達成している。
論文 参考訳(メタデータ) (2024-02-21T14:16:49Z) - EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS [40.94643885302646]
3Dガウシアンスプラッティング(3D-GS)は、ノベルビューシーンの合成で人気がある。
レイディアンス・ニューラル・フィールド(NeRF)に関連する長いトレーニング時間と遅いレンダリング速度の課題に対処する。
本稿では,メモリ単位の記憶容量を大幅に削減するために,量子化埋め込みを利用する手法を提案する。
論文 参考訳(メタデータ) (2023-12-07T18:59:55Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。