論文の概要: Optimizing Qubit Mapping with Quasi-Orthogonal Space-Time Block Codes and Quaternion Orthogonal Designs
- arxiv url: http://arxiv.org/abs/2412.06145v1
- Date: Mon, 09 Dec 2024 01:58:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:32.356151
- Title: Optimizing Qubit Mapping with Quasi-Orthogonal Space-Time Block Codes and Quaternion Orthogonal Designs
- Title(参考訳): 準直交空間時間ブロック符号と四元直交直交設計によるクビットマッピングの最適化
- Authors: Valentine Nyirahafashimana, Nurisya Mohd Shah, Umair Abdul Halim, Mohamed Othman, Sharifah Kartini Said Husain,
- Abstract要約: 本研究では、量子誤り訂正フレームワークにおける準直交時空間ブロック符号(QOSTBC)と準直交時空間ブロック符号(QOD)の統合による量子ビットマッピングについて検討する。
- 参考スコア(独自算出の注目度): 1.25828876338076
- License:
- Abstract: This study explores the qubit mapping through the integration of Quasi-Orthogonal Space-Time Block Codes (QOSTBCs) with Quaternion Orthogonal Designs (QODs) in quantum error correction (QEC) frameworks. QOSTBCs have gained prominence for enhancing performance and reliability in quantum computing and communication systems. These codes draw on stabilizer group formalism and QODs to boost error correction, with QOSTBCs mapping logical qubits to physical ones, refines error handling in complex channels environments. Simulations results demonstrate the effectiveness of this approach by comparing the percentage improvement under various detected and corrected error conditions for four different cases, \textbf{$Z_1$} up to \textbf{$Z_4$}. The obtained simulations and implemental results show that QOSTBCs consistently achieve a higher correction improvement percentage than stabilizer Group for \textbf{$Z_1$}, \textbf{$Z_2$}, and \textbf{$Z_4$}; QOSTBCs can correct more errors than those detected, achieving over 100\% correction rates for first two cases, which indicates their enhanced resilience and redundancy in high-error environments. While for \textbf{$Z_3$}, stabilizer consistently remains above that of QOSTBCs, reflecting its slightly better performance. These outcomes indicate that QOSTBCs are reliable in making better logarithmic efficiency and error resilience, making them a valuable asset for quantum information processing and advanced wireless communication.
- Abstract(参考訳): 本研究では、量子誤り訂正(QEC)フレームワークにおける準直交時空間ブロック符号(QOSTBC)と準直交時空間ブロック符号(QOD)の統合による量子ビットマッピングについて検討する。
QOSTBCは、量子コンピューティングと通信システムの性能と信頼性を向上させることで有名になった。
これらの符号は安定化群形式とQODを用いて誤り訂正を促進し、QOSTBCは論理量子ビットを物理ビットにマッピングし、複雑なチャネル環境におけるエラー処理を洗練させる。
シミュレーションの結果は、検出および修正された4つのケースに対する様々なエラー条件下でのパーセンテージ改善を、 \textbf{$Z_4$} から \textbf{$Z_4$} に比較することにより、このアプローチの有効性を示す。
その結果,QOSTBCは検出した値よりも高い誤差を補正でき,最初の2例では100倍以上の補正率を達成でき,高い環境下でのレジリエンスと冗長性の向上が示される。
textbf{$Z_3$} の場合、安定化器は QOSTBC よりも常に上であり、性能はわずかに向上している。
これらの結果から、QOSTBCは対数効率とエラーレジリエンスの向上に信頼性があり、量子情報処理や高度な無線通信に有用な資産であることが示唆された。
関連論文リスト
- Transforming qubits via quasi-geometric approaches [0.0]
少数の量子ビットをより大きな数の誤り訂正量子ビットに変換する理論を開発する。
2次元の準直交完全補完符号 (2D-QOCCCSs) と準巡回非対称量子誤り訂正符号 (AQECCs) を準群および群理論特性を介して用いる。
論文 参考訳(メタデータ) (2024-07-10T11:41:26Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - DGR: Tackling Drifted and Correlated Noise in Quantum Error Correction via Decoding Graph Re-weighting [14.817445452647588]
量子オーバーヘッドを伴わない効率的なデコードグラフエッジ再重み付け戦略を提案する。
DGRは、平均ケースノイズミスマッチで論理誤差率を3.6倍にし、最悪のケースミスマッチで5000倍以上の改善を行う。
論文 参考訳(メタデータ) (2023-11-27T18:26:16Z) - Q-Pandora Unboxed: Characterizing Noise Resilience of Quantum Error
Correction Codes [2.348041867134616]
量子誤り訂正符号(QECC)は、脆弱な量子状態をノイズやエラーから保護することにより、信頼性の高い量子コンピューティングを実現するために重要である。
本稿では,2つのQECCを異なる誤差型とノイズモデルで解析し,シミュレーションによる総合的研究を行う。
回転曲面符号は、単純さと量子ビットオーバーヘッドの低さに起因する高いしきい値で最高の性能を発揮する。
論文 参考訳(メタデータ) (2023-08-05T02:24:55Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Low-overhead quantum error correction codes with a cyclic topology [0.0]
本稿では,リングアーキテクチャ上での小さな距離に対する循環安定化器を用いた5ビット完全符号の資源効率のスケーリングを提案する。
非隣り合うデータ量子ビットに絡み合ったアンシラを持つ補正符号の量子回路を構築する方法を示す。
論文 参考訳(メタデータ) (2022-11-06T12:22:23Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Graph-Theoretic Approach to Quantum Error Correction [0.0]
量子ビットおよび量子ビットとして表される高次量子系の誤りを補正するための新しい量子誤り訂正符号のクラスについて検討する。
これらの符号は、元のグラフ理論による量子エラーの集合の表現に由来する。
本稿では,従来よりも高い符号化率を実現する完全相関雑音に対する最適符号化と,単一キューディットに対する最小符号化の2つの例を示す。
論文 参考訳(メタデータ) (2021-10-16T00:04:24Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
実効多部絡み(GME)認証のための条件付き目撃手法を導入する。
線形な二分割数における絡み合いの検出は, 多数の測定値によって線形にスケールし, GMEの認証に十分であることを示す。
本手法は, 距離3の位相的カラーコードとフラグベースの耐故障バージョンにおける安定化作用素の雑音可読化に適用する。
論文 参考訳(メタデータ) (2020-10-06T18:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。