論文の概要: Performance and achievable rates of the Gottesman-Kitaev-Preskill code for pure-loss and amplification channels
- arxiv url: http://arxiv.org/abs/2412.06715v1
- Date: Mon, 09 Dec 2024 18:03:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:54:02.226659
- Title: Performance and achievable rates of the Gottesman-Kitaev-Preskill code for pure-loss and amplification channels
- Title(参考訳): Gottesman-Kitaev-Preskill符号の性能と実現可能性
- Authors: Guo Zheng, Wenhao He, Gideon Lee, Kyungjoo Noh, Liang Jiang,
- Abstract要約: 我々は,純粋な損失と純粋増幅の下で,任意のGottesman-Kitaev-Preskill符号のほぼ最適性能を解析的に取得する。
その結果,GKP符号は,損失と増幅の能力を達成する最初の構造付きボソニック符号群として確立された。
- 参考スコア(独自算出の注目度): 2.955647071443854
- License:
- Abstract: Quantum error correction codes protect information from realistic noisy channels and lie at the heart of quantum computation and communication tasks. Understanding the optimal performance and other information-theoretic properties, such as the achievable rates, of a given code is crucial, as these factors determine the fundamental limits imposed by the encoding in conjunction with the noise channel. Here, we use the transpose channel to analytically obtain the near-optimal performance of any Gottesman-Kitaev-Preskill (GKP) code under pure loss and pure amplification. We present rigorous connections between GKP code's near-optimal performance and its dual lattice geometry and average input energy. With no energy constraint, we show that when $\vert\frac{\tau}{1 - \tau}\vert$ is an integer, specific families of GKP codes simultaneously achieve the loss and amplification capacity. $\tau$ is the transmissivity (gain) for loss (amplification). Our results establish GKP code as the first structured bosonic code family that achieves the capacity of loss and amplification.
- Abstract(参考訳): 量子エラー訂正符号は、現実的なノイズのあるチャネルから情報を保護し、量子計算や通信タスクの中心に位置する。
これらの要因は、ノイズチャネルと連動して符号化によって課される基本的限界を決定するため、与えられたコードの最適性能や達成可能なレートなどの情報理論的性質を理解することが重要である。
ここでは、トランスポーズチャネルを用いて、純粋な損失と純粋な増幅の下で、任意のGKP符号のほぼ最適性能を解析的に取得する。
我々は,GKP符号の準最適性能と,その双対格子形状と平均入力エネルギーとの間の厳密な接続について述べる。
エネルギー制約がなければ、$\vert\frac{\tau}{1 - \tau}\vert$ が整数であるとき、GKP符号の特定の族が同時に損失と増幅能力を達成することを示す。
$\tau$は損失(増幅)に対する透過性(利得)である。
その結果,GKP符号は,損失と増幅の能力を達成する最初の構造付きボソニック符号群として確立された。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - The Near-optimal Performance of Quantum Error Correction Codes [2.670972517608388]
任意の符号と雑音に対する簡潔で最適化のない計量である準最適チャネル忠実度を導出する。
従来の最適化手法と比較して、計算コストの削減により、以前はアクセス不能なサイズであったシステムをシミュレートすることができる。
熱力学符号とGottesman-Kitaev-Preskill (GKP)符号のほぼ最適性能を解析的に導出した。
論文 参考訳(メタデータ) (2024-01-04T01:44:53Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
最近報告されたGKP量子ビットの生成と誤り訂正は、量子コンピューティングの将来に大きな期待を抱いている。
プロトコルパラメータを最適化する効率的な数値計算法を開発した。
提案手法は,GKP量子ビットを用いたフォールトトレラント量子計算への主な障害を回避している。
論文 参考訳(メタデータ) (2023-02-23T15:21:50Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Gottesmann-Kitaev-Preskill (GKP)エンコーディングに基づく連続可変量子コンピューティングアーキテクチャが有望な候補として浮上している。
矩形格子GKPの符号容量挙動を,等方的ガウス変位チャネルの下で繰り返し符号化する。
論文 参考訳(メタデータ) (2022-12-21T22:56:05Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Analysis of loss correction with the Gottesman-Kitaev-Preskill code [0.0]
Gottesman-Kitaev-Preskill (GKP) コードは有望なボゾン量子誤り訂正符号である。
GKPの誤り訂正には増幅が不要であることを示す。
論文 参考訳(メタデータ) (2021-12-02T17:15:21Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
ボソニック符号は量子情報処理のためのノイズレジリエンスを提供する。
本稿では,Gottesman-Kitaev-Preskill符号を用いて,デフォールトエラー発生キュービットと量子パリティ符号を用いて残差の処理を行う。
我々の研究は、幅広い量子計算と通信シナリオに応用できるかもしれない。
論文 参考訳(メタデータ) (2021-02-02T08:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。