論文の概要: Modeling Latent Non-Linear Dynamical System over Time Series
- arxiv url: http://arxiv.org/abs/2412.08114v3
- Date: Mon, 16 Dec 2024 08:25:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:27.345793
- Title: Modeling Latent Non-Linear Dynamical System over Time Series
- Title(参考訳): 時系列による潜時非線形力学系のモデル化
- Authors: Ren Fujiwara, Yasuko Matsubara, Yasushi Sakurai,
- Abstract要約: 本研究では,データから直接方程式を導出することにより時系列を与えられる非線形力学系をモデル化する問題について検討する。
本稿では、時間依存型モデリングを可能にする潜在状態を導入し、この問題を潜時状態の動的推定問題として定式化する。
- 参考スコア(独自算出の注目度): 7.534744211716623
- License:
- Abstract: We study the problem of modeling a non-linear dynamical system when given a time series by deriving equations directly from the data. Despite the fact that time series data are given as input, models for dynamics and estimation algorithms that incorporate long-term temporal dependencies are largely absent from existing studies. In this paper, we introduce a latent state to allow time-dependent modeling and formulate this problem as a dynamics estimation problem in latent states. We face multiple technical challenges, including (1) modeling latent non-linear dynamics and (2) solving circular dependencies caused by the presence of latent states. To tackle these challenging problems, we propose a new method, Latent Non-Linear equation modeling (LaNoLem), that can model a latent non-linear dynamical system and a novel alternating minimization algorithm for effectively estimating latent states and model parameters. In addition, we introduce criteria to control model complexity without human intervention. Compared with the state-of-the-art model, LaNoLem achieves competitive performance for estimating dynamics while outperforming other methods in prediction.
- Abstract(参考訳): 本研究では,データから直接方程式を導出することにより時系列を与えられる非線形力学系をモデル化する問題について検討する。
時系列データが入力として与えられるという事実にもかかわらず、長期の時間的依存を組み込んだ力学と推定アルゴリズムのモデルは、既存の研究にはほとんど欠落している。
本稿では、時間依存型モデリングを可能にする潜時状態を導入し、この問題を潜時状態の動的推定問題として定式化する。
我々は,(1)潜在非線形力学のモデル化,(2)潜伏状態の存在による円形依存の解決など,複数の技術的課題に直面している。
これらの課題に対処するために、潜在非線形力学系をモデル化できる新しい非線形方程式モデリング(LaNoLem)と、潜在状態とモデルパラメータを効果的に推定する新しい交代最小化アルゴリズムを提案する。
また,人間の介入なしにモデルの複雑さを制御できる基準を導入する。
最先端モデルと比較して、LaNoLemは、予測において他の手法よりも優れた性能を保ちながら、ダイナミクスを推定する競争性能を達成する。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman based Deep Learning Methods [8.654571696634825]
State Space Models (SSM) と Koopman に基づくディープラーニング手法は、線形および非線形の剛弦の力学をモデル化する。
以上の結果から,提案したクープマンモデルが,長周期モデリングにおける非線形ケースにおいて,他の既存手法と同等以上の性能を示すことが示唆された。
本研究は、これらの手法と過去の手法の比較概要を提供し、モデル改善のための革新的な戦略を導入することにより、力学系の物理モデリングに関する洞察を貢献する。
論文 参考訳(メタデータ) (2024-08-29T15:55:27Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
格子独立モデル学習偏微分方程式(PDE)を雑音および不規則格子上の部分的な観測から導入する。
本稿では、効率的な確率的フレームワークとデータ効率とグリッド独立性を改善するための新しい設計エンコーダを備えた時空間連続型ニューラルネットワークPDEモデルを提案する。
論文 参考訳(メタデータ) (2023-07-09T06:53:59Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
我々は,時間変化パラメータと時間不変パラメータの両方を復元できるベイズ推論のシミュレーションに基づくディープラーニング手法を開発した。
この結果から,ディープラーニングアプローチは時間的ダイナミクスを捉える上で極めて効率的であることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T17:42:53Z) - Stability Preserving Data-driven Models With Latent Dynamics [0.0]
本稿では,潜在変数を用いた動的問題に対するデータ駆動型モデリング手法を提案する。
本稿では,結合力学の安定性を容易に適用できるモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-20T00:41:10Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。