論文の概要: Autoformalizing and Simulating Game-Theoretic Scenarios using LLM-augmented Agents
- arxiv url: http://arxiv.org/abs/2412.08805v1
- Date: Wed, 11 Dec 2024 22:37:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:00.552331
- Title: Autoformalizing and Simulating Game-Theoretic Scenarios using LLM-augmented Agents
- Title(参考訳): LLM強化エージェントを用いたゲーム理論シナリオの自動生成とシミュレーション
- Authors: Agnieszka Mensfelt, Kostas Stathis, Vince Trencsenyi,
- Abstract要約: 大規模言語モデル(LLM)を用いたゲーム理論シナリオの自動形式化を実現するフレームワークを提案する。
LLMの拡張されたエージェントは、自然言語のシナリオ記述を、各ゲームのルールを定義する実行可能な論理プログラムに変換する。
次にトーナメントシミュレーションを行い、エージェントが生成したゲームの機能をプレイしてテストする。
- 参考スコア(独自算出の注目度): 3.5083201638203154
- License:
- Abstract: Game-theoretic simulations are a versatile tool for exploring interactions of both natural and artificial agents. However, modelling real-world scenarios and developing simulations often require substantial human expertise and effort. To streamline this process, we present a framework that enables the autoformalization of game-theoretic scenarios using agents augmented by large language models (LLMs). In this approach, LLM-augmented agents translate natural language scenario descriptions into executable logic programs that define the rules of each game, validating these programs for syntactic accuracy. A tournament simulation is then conducted, during which the agents test the functionality of the generated games by playing them. When a ground truth payoff matrix is available, an exact semantic validation can also be performed. The validated games can then be used in further simulations to assess the effectiveness of different strategies. We evaluate our approach on a diverse set of 55 natural language descriptions across five well-known 2x2 simultaneous-move games, demonstrating 96% syntactic and 87% semantic correctness in the generated game rules. Additionally, we assess the LLM-augmented agents' capability to autoformalize strategies for gameplay.
- Abstract(参考訳): ゲーム理論シミュレーションは、自然エージェントと人工エージェントの両方の相互作用を探索するための汎用的なツールである。
しかし、現実世界のシナリオをモデル化し、シミュレーションを開発するには、かなりの専門知識と努力が必要であることが多い。
このプロセスを合理化するために,大規模言語モデル(LLM)で拡張されたエージェントを用いてゲーム理論シナリオの自動形式化を可能にするフレームワークを提案する。
このアプローチでは、LLM拡張エージェントが自然言語のシナリオ記述を各ゲームのルールを定義する実行可能な論理プログラムに変換し、それらのプログラムを構文的精度で検証する。
次にトーナメントシミュレーションを行い、エージェントが生成したゲームの機能をプレイしてテストする。
基本真理ペイオフ行列が利用可能であれば、正確なセマンティックバリデーションを行うこともできる。
検証されたゲームは、異なる戦略の有効性を評価するために、さらなるシミュレーションで使用できる。
我々は,5つのよく知られた2x2同時移動ゲームにおける55種類の自然言語記述に対するアプローチを評価し,生成したゲームルールにおいて,96%の構文的,87%の意味的正当性を実証した。
さらに,ゲームプレイの戦略を自動生成するLLM拡張エージェントの能力を評価する。
関連論文リスト
- Verbalized Bayesian Persuasion [54.55974023595722]
情報設計(ID)は、送信者が受信者の最適な振る舞いにどのように影響し、特定の目的を達成するかを探索する。
本研究は,従来のBPを人間の対話を含む現実のゲームに拡張した,ベイズ説得(BP)における言語化フレームワークを提案する。
勧告書,法廷相互作用,法執行機関などの対話シナリオにおける数値実験により,従来のBPの理論的結果の再現と効果的な説得戦略の発見が可能であることを確認した。
論文 参考訳(メタデータ) (2025-02-03T18:20:10Z) - Multi-agent KTO: Reinforcing Strategic Interactions of Large Language Model in Language Game [32.791648070823776]
Werewolfは、言語理解をテストするソーシャル推論ゲームである。
マルチエージェントKahneman & Tversky's Optimization (MaKTO) を開発した。
MaKTOは様々なモデルの平均勝利率を61%達成している。
論文 参考訳(メタデータ) (2025-01-24T04:09:03Z) - Reasoning, Memorization, and Fine-Tuning Language Models for Non-Cooperative Games [18.406992961818368]
ゲームにおける学習済み言語モデルの能力を高めるために,思考のツリーとマルチエージェントフレームワークを統合する手法を開発した。
ベンチマークアルゴリズムに対して65%の勝利率を示し、微調整後の10%の改善を加えました。
論文 参考訳(メタデータ) (2024-10-18T22:28:22Z) - Autoformalization of Game Descriptions using Large Language Models [3.5083201638203154]
ゲーム理論シナリオの自動形式化のためのフレームワークを提案する。
これは、自然言語の記述を形式的解法に適した形式論理表現に変換する。
GPT-4oと自然言語問題記述のデータセットを用いたフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-09-18T20:18:53Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - The Consensus Game: Language Model Generation via Equilibrium Search [73.51411916625032]
言語モデル復号のための学習不要なゲーム理論を新たに導入する。
本手法では,正規化不完全情報シーケンシャルシグナリングゲームとして,言語モデルの復号化を行う。
EQUILIBRium-RANKINGをLLaMA-7Bに適用すると、より大型のLLaMA-65BとPaLM-540Bより優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-13T14:27:21Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Pre-trained Language Models as Prior Knowledge for Playing Text-based
Games [2.423547527175808]
本稿では,LMフレームワークを用いたシンプルなRLを提案することにより,エージェントの意味的理解を改善する。
我々は,この人気ゲームであるZolk1において,我々のモデルがどのように既存のエージェントよりも優れているかを実証するために,我々のフレームワークの詳細な研究を行う。
提案手法は,テキストゲームの他のセットにおける最先端モデルに対して,コンパレントに機能する。
論文 参考訳(メタデータ) (2021-07-18T10:28:48Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Generalization of Agent Behavior through Explicit Representation of
Context [14.272883554753323]
デジタルインタラクティブ環境で自律エージェントをデプロイするには、目に見えない状況で堅牢に動作できなければならない。
本稿では,ゲームにおいてコンテキストモジュールとスキルモジュールが共存する原理的アプローチを提案する。
このアプローチは、Flappy BirdとLunarLanderのビデオゲーム、およびCARLAの自動運転シミュレーションで評価されている。
論文 参考訳(メタデータ) (2020-06-18T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。