論文の概要: GAMA: Generative Agents for Multi-Agent Autoformalization
- arxiv url: http://arxiv.org/abs/2412.08805v2
- Date: Tue, 18 Feb 2025 12:06:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:02:22.728228
- Title: GAMA: Generative Agents for Multi-Agent Autoformalization
- Title(参考訳): GAMA:マルチエージェントオートフォーマライゼーションのための生成エージェント
- Authors: Agnieszka Mensfelt, Kostas Stathis, Vince Trencsenyi,
- Abstract要約: 大規模言語モデル(LLM)により強化されたエージェントを用いた対話シナリオの自動形式化を実現するフレームワークを提案する。
エージェントは、インタラクションの自然言語記述を、各ゲームのルールを定義する実行可能な論理プログラムに変換する。
トーナメントシミュレーションは、生成されたゲームルールと戦略の機能をテストする。
- 参考スコア(独自算出の注目度): 3.5083201638203154
- License:
- Abstract: Multi-agent simulations facilitate the exploration of interactions among both natural and artificial agents. However, modelling real-world scenarios and developing simulations often requires substantial expertise and effort. To streamline this process, we present a framework that enables the autoformalization of interaction scenarios using agents augmented by large language models (LLMs) utilising game-theoretic formalisms. The agents translate natural language descriptions of interactions into executable logic programs that define the rules of each game, ensuring syntactic correctness through validation by a solver. A tournament simulation then tests the functionality of the generated game rules and strategies. After the tournament, if a ground truth payoff matrix is available, an exact semantic validation is performed. We evaluate our approach on a diverse set of 110 natural language descriptions exemplifying five $2\times2$ simultaneous-move games, achieving 100% syntactic and 76.5% semantic correctness in the generated game rules for Claude 3.5 Sonnet, and 99.82% syntactic and 77% semantic correctness for GPT-4o. Additionally, we demonstrate high semantic correctness in autoformalizing gameplay strategies. Overall, the results highlight the potential of autoformalization to leverage LLMs in generating formal reasoning modules for decision-making agents.
- Abstract(参考訳): マルチエージェントシミュレーションは、自然エージェントと人工エージェントの相互作用の探索を容易にする。
しかし、実世界のシナリオをモデル化し、シミュレーションを開発するには、しばしばかなりの専門知識と努力が必要である。
このプロセスを合理化するために,大言語モデル(LLM)により強化されたエージェントを用いた対話シナリオの自動形式化を実現するフレームワークを提案する。
エージェントは、相互作用の自然言語記述を、各ゲームのルールを定義する実行可能な論理プログラムに変換し、解決者による検証を通じて構文的正確性を確保する。
トーナメントシミュレーションは、生成されたゲームルールと戦略の機能をテストする。
トーナメント後、基底真理ペイオフ行列が利用可能であれば、正確なセマンティックバリデーションが行われる。
我々は,Claude 3.5 Sonnetのゲームルールにおける100%の構文と76.5%の意味的正当性を達成し,GPT-4oの99.82%の構文的正当性と77%の意味的正当性を実証した。
さらに,ゲームプレイ戦略の自己形式化において,高い意味的正当性を示す。
全体としては, 意思決定エージェントの形式的推論モジュール生成において, LLMを活用する自己形式化の可能性を強調した。
関連論文リスト
- Verbalized Bayesian Persuasion [54.55974023595722]
情報設計(ID)は、送信者が受信者の最適な振る舞いにどのように影響し、特定の目的を達成するかを探索する。
本研究は,従来のBPを人間の対話を含む現実のゲームに拡張した,ベイズ説得(BP)における言語化フレームワークを提案する。
勧告書,法廷相互作用,法執行機関などの対話シナリオにおける数値実験により,従来のBPの理論的結果の再現と効果的な説得戦略の発見が可能であることを確認した。
論文 参考訳(メタデータ) (2025-02-03T18:20:10Z) - Multi-agent KTO: Reinforcing Strategic Interactions of Large Language Model in Language Game [32.791648070823776]
Werewolfは、言語理解をテストするソーシャル推論ゲームである。
マルチエージェントKahneman & Tversky's Optimization (MaKTO) を開発した。
MaKTOは様々なモデルの平均勝利率を61%達成している。
論文 参考訳(メタデータ) (2025-01-24T04:09:03Z) - Reasoning, Memorization, and Fine-Tuning Language Models for Non-Cooperative Games [18.406992961818368]
ゲームにおける学習済み言語モデルの能力を高めるために,思考のツリーとマルチエージェントフレームワークを統合する手法を開発した。
ベンチマークアルゴリズムに対して65%の勝利率を示し、微調整後の10%の改善を加えました。
論文 参考訳(メタデータ) (2024-10-18T22:28:22Z) - Autoformalization of Game Descriptions using Large Language Models [3.5083201638203154]
ゲーム理論シナリオの自動形式化のためのフレームワークを提案する。
これは、自然言語の記述を形式的解法に適した形式論理表現に変換する。
GPT-4oと自然言語問題記述のデータセットを用いたフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-09-18T20:18:53Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - The Consensus Game: Language Model Generation via Equilibrium Search [73.51411916625032]
言語モデル復号のための学習不要なゲーム理論を新たに導入する。
本手法では,正規化不完全情報シーケンシャルシグナリングゲームとして,言語モデルの復号化を行う。
EQUILIBRium-RANKINGをLLaMA-7Bに適用すると、より大型のLLaMA-65BとPaLM-540Bより優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-13T14:27:21Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Pre-trained Language Models as Prior Knowledge for Playing Text-based
Games [2.423547527175808]
本稿では,LMフレームワークを用いたシンプルなRLを提案することにより,エージェントの意味的理解を改善する。
我々は,この人気ゲームであるZolk1において,我々のモデルがどのように既存のエージェントよりも優れているかを実証するために,我々のフレームワークの詳細な研究を行う。
提案手法は,テキストゲームの他のセットにおける最先端モデルに対して,コンパレントに機能する。
論文 参考訳(メタデータ) (2021-07-18T10:28:48Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Generalization of Agent Behavior through Explicit Representation of
Context [14.272883554753323]
デジタルインタラクティブ環境で自律エージェントをデプロイするには、目に見えない状況で堅牢に動作できなければならない。
本稿では,ゲームにおいてコンテキストモジュールとスキルモジュールが共存する原理的アプローチを提案する。
このアプローチは、Flappy BirdとLunarLanderのビデオゲーム、およびCARLAの自動運転シミュレーションで評価されている。
論文 参考訳(メタデータ) (2020-06-18T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。