論文の概要: An Analysis Framework for Understanding Deep Neural Networks Based on Network Dynamics
- arxiv url: http://arxiv.org/abs/2501.02436v1
- Date: Sun, 05 Jan 2025 04:23:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:21.007085
- Title: An Analysis Framework for Understanding Deep Neural Networks Based on Network Dynamics
- Title(参考訳): ネットワークダイナミクスに基づくディープニューラルネットワークの理解のための分析フレームワーク
- Authors: Yuchen Lin, Yong Zhang, Sihan Feng, Hong Zhao,
- Abstract要約: ディープニューラルネットワーク(DNN)は、ディープ層にまたがる異なるモードのニューロンの割合を合理的に割り当てることで、情報抽出を最大化する。
このフレームワークは、"フラット・ミニマ効果(flat minima effect)"、"グロッキング(grokking)"、二重降下現象(double descend phenomena)など、基本的なDNNの振る舞いについて統一的な説明を提供する。
- 参考スコア(独自算出の注目度): 11.44947569206928
- License:
- Abstract: Advancing artificial intelligence demands a deeper understanding of the mechanisms underlying deep learning. Here, we propose a straightforward analysis framework based on the dynamics of learning models. Neurons are categorized into two modes based on whether their transformation functions preserve order. This categorization reveals how deep neural networks (DNNs) maximize information extraction by rationally allocating the proportion of neurons in different modes across deep layers. We further introduce the attraction basins of the training samples in both the sample vector space and the weight vector space to characterize the generalization ability of DNNs. This framework allows us to identify optimal depth and width configurations, providing a unified explanation for fundamental DNN behaviors such as the "flat minima effect," "grokking," and double descent phenomena. Our analysis extends to networks with depths up to 100 layers.
- Abstract(参考訳): 人工知能の強化は、ディープラーニングの基礎となるメカニズムのより深い理解を要求する。
そこで本研究では,学習モデルのダイナミクスに基づく簡単な分析フレームワークを提案する。
ニューロンは、その変換機能が秩序を保つかどうかに基づいて、2つのモードに分類される。
この分類は、ディープニューラルネットワーク(DNN)が、ディープ層にまたがる異なるモードのニューロンの割合を合理的に割り当てることで、情報の抽出を最大化する方法を明らかにしている。
さらに、DNNの一般化能力を特徴付けるために、サンプルベクトル空間と重みベクトル空間の両方においてトレーニングサンプルのアトラクション盆地を導入する。
このフレームワークにより、最適深さと幅の設定を特定でき、"フラットミニマ効果"、"グロッキング"、"ダブル降下現象"といった基本的なDNNの挙動を統一的に説明できる。
私たちの分析は、最大100層まで深さのあるネットワークに拡張されます。
関連論文リスト
- Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
スパースコーディングとディープラーニングの交差点を探索し,特徴抽出能力の理解を深める。
我々は、畳み込みニューラルネットワーク(CNN)のスパース特徴抽出能力の収束率を導出する。
スパースコーディングとCNNの強いつながりにインスパイアされた私たちは、ニューラルネットワークがよりスパースな機能を学ぶように促すトレーニング戦略を探求する。
論文 参考訳(メタデータ) (2024-08-10T12:43:55Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
深部分離型畳み込みニューラルネットワーク(DS-CNN)の最近の進歩は、新しいアーキテクチャをもたらす。
本稿では,DS-CNNアーキテクチャのもう一つの顕著な特性を明らかにする。
論文 参考訳(メタデータ) (2024-01-25T19:05:53Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - SGD Distributional Dynamics of Three Layer Neural Networks [7.025709586759655]
本稿は,Mei et alの平均場結果を拡張することを目的とする。
1つの隠れ層を持つ2つのニューラルネットワークから、2つの隠れ層を持つ3つのニューラルネットワークへ。
sgd は非線形微分方程式の組によって捉えられ、2つの層におけるダイナミクスの分布は独立であることが証明される。
論文 参考訳(メタデータ) (2020-12-30T04:37:09Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
ニューラルネットワークの計算の非線形性を定量化する複雑性の概念を定義する。
トレーニング対象ネットワークとトレーニング対象ネットワークの動的特性の両面から,これらのオブザーバブルについて検討する。
論文 参考訳(メタデータ) (2020-06-08T17:59:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。