論文の概要: SPECTRE: A Hybrid System for an Adaptative and Optimised Cyber Threats Detection, Response and Investigation in Volatile Memory
- arxiv url: http://arxiv.org/abs/2501.03898v1
- Date: Tue, 07 Jan 2025 16:05:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:49.741082
- Title: SPECTRE: A Hybrid System for an Adaptative and Optimised Cyber Threats Detection, Response and Investigation in Volatile Memory
- Title(参考訳): SPECTRE: 揮発性記憶の適応的かつ最適化されたサイバー脅威検出・応答・調査のためのハイブリッドシステム
- Authors: Arslan Tariq Syed, Mohamed Chahine Ghanem, Elhadj Benkhelifa, Fauzia Idrees Abro,
- Abstract要約: 本研究は,脅威検出,調査,可視化の促進を目的としたモジュール型サイバーインシデント対応システムであるSPECTREを紹介する。
認証ダンピングや悪意のあるプロセスインジェクションといった現実的な攻撃シナリオを安全に再現し、制御された実験を行う。
SPECTREの高度な視覚化技術は、生のメモリデータを実用的な洞察に変換し、Red、Blue、Purpleのチームが戦略を洗練し、脅威に効果的に対応できるようにする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The increasing sophistication of modern cyber threats, particularly file-less malware relying on living-off-the-land techniques, poses significant challenges to traditional detection mechanisms. Memory forensics has emerged as a crucial method for uncovering such threats by analysing dynamic changes in memory. This research introduces SPECTRE (Snapshot Processing, Emulation, Comparison, and Threat Reporting Engine), a modular Cyber Incident Response System designed to enhance threat detection, investigation, and visualization. By adopting Volatility JSON format as an intermediate output, SPECTRE ensures compatibility with widely used DFIR tools, minimizing manual data transformations and enabling seamless integration into established workflows. Its emulation capabilities safely replicate realistic attack scenarios, such as credential dumping and malicious process injections, for controlled experimentation and validation. The anomaly detection module addresses critical attack vectors, including RunDLL32 abuse and malicious IP detection, while the IP forensics module enhances threat intelligence by integrating tools like Virus Total and geolocation APIs. SPECTRE advanced visualization techniques transform raw memory data into actionable insights, aiding Red, Blue and Purple teams in refining strategies and responding effectively to threats. Bridging gaps between memory and network forensics, SPECTRE offers a scalable, robust platform for advancing threat detection, team training, and forensic research in combating sophisticated cyber threats.
- Abstract(参考訳): 現代のサイバー脅威、特にリビングオフ・ザ・ランド技術に依存するファイルレスマルウェアの高度化は、従来の検出メカニズムに重大な課題をもたらす。
メモリ法医学は、メモリの動的変化を分析してそのような脅威を明らかにする重要な方法として登場した。
本研究は,脅威検出,調査,可視化の強化を目的としたモジュール型サイバーインシデント対応システムであるSPECTRE(Snapshot Processing, Emulation, Comparison, and Threat Reporting Engine)を紹介する。
Volatility JSONフォーマットを中間出力として採用することにより、SPECTREは広く使用されているDFIRツールとの互換性を確保し、手動のデータ変換を最小限にし、確立したワークフローへのシームレスな統合を可能にする。
そのエミュレーション機能は、認証ダンピングや悪意のあるプロセスインジェクションなどの現実的な攻撃シナリオを安全に再現し、実験と検証を制御できる。
異常検出モジュールは、RunDLL32の乱用や悪意のあるIP検出を含む重要な攻撃ベクタに対処する一方、IP法医学モジュールは、ウイルストータルや位置情報APIなどのツールを統合することで、脅威知能を高める。
SPECTREの高度な視覚化技術は、生のメモリデータを実用的な洞察に変換し、Red、Blue、Purpleのチームが戦略を洗練し、脅威に効果的に対応できるようにする。
メモリとネットワークの法医学のギャップを埋めることで、SPECTREは、高度なサイバー脅威と戦うための脅威検出、チームトレーニング、および法医学的な研究を促進する、スケーラブルで堅牢なプラットフォームを提供する。
関連論文リスト
- Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
本研究では機械学習(ML)技術を活用した効果的なマルウェア検出戦略の必要性に対処する。
本研究の目的は、個々のマシンの特定の状況に基づいて、マルウェアの脆弱性を正確に予測する高度なMLモデルを開発することである。
論文 参考訳(メタデータ) (2025-01-05T10:04:58Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
スマートグリッドへの移行により、高度なサイバー脅威に対する電力システムの脆弱性が増大した。
本稿では,モジュール型サイバーアタックの実行に自律エージェントを用いたシミュレーションフレームワークを提案する。
当社のアプローチは、データ生成のための柔軟で汎用的なソースを提供し、より高速なプロトタイピングと開発リソースと時間の削減を支援します。
論文 参考訳(メタデータ) (2024-12-05T08:56:38Z) - MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
本稿では、インジェクションアタックとして知られる特定のタイプのサイバーアタックについて考察する。
これらのインジェクション攻撃は時間の経過とともに効果があり、徐々にネットワークトラフィックを操作し、車両の正常な機能を破壊している。
本稿では,MDHP-LSTMブロックに最適なMDHPパラメータを組み込んだインジェクション攻撃検出器MDHP-Netを提案する。
論文 参考訳(メタデータ) (2024-11-15T15:05:01Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
本研究は, プライバシー保護型サイバー脅威検出のための学習の可能性について, 有効性, ビザンチンレジリエンス, 効率の観点から, 体系的に検証した。
FLトレーニングされた検出モデルは、中央訓練された検出モデルに匹敵する性能が得られることを示す。
現実的な脅威モデルの下では、FLはデータ中毒とモデル中毒の両方の攻撃に対して抵抗性があることが判明した。
論文 参考訳(メタデータ) (2024-04-08T01:16:56Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
本稿では,異常検出に焦点をあてた,サイバーセキュリティ向上のための革新的な注意-GANフレームワークを提案する。
提案手法は、多様なリアルな合成攻撃シナリオを生成し、データセットを充実させ、脅威識別を改善することを目的としている。
GAN(Generative Adversarial Networks)と注意機構を統合することが提案手法の重要な特徴である。
attention-GANフレームワークは先駆的なアプローチとして登場し、高度なサイバー防御戦略のための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-02-25T01:10:55Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
論文 参考訳(メタデータ) (2023-08-29T23:02:26Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
この研究は、データ中毒やネットワーク攻撃から学習を保護するために、セキュアな分散アルゴリズムを開発することを目的としている。
我々は,分散サポートベクトルマシン(SVM)を使用する学習者と,トレーニングデータやラベルを変更することができる攻撃者の相反する目標を捉えるためのゲーム理論の枠組みを確立する。
数値的な結果から,分散SVMは異なるタイプの攻撃で失敗する傾向にあり,ネットワーク構造や攻撃能力に強い依存があることが分かる。
論文 参考訳(メタデータ) (2020-03-08T18:54:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。