論文の概要: DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
- arxiv url: http://arxiv.org/abs/2501.04353v1
- Date: Wed, 08 Jan 2025 08:51:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:31.443380
- Title: DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
- Title(参考訳): DeFusion: マルチモーダル妊娠予測に有効なデカップリング型核融合ネットワーク
- Authors: Xueqiang Ouyang, Jia Wei, Wenjie Huo, Xiaocong Wang, Rui Li, Jianlong Zhou,
- Abstract要約: 本稿では,IVF-ET妊娠予測のためのマルチモーダル情報を統合するために,DeFusionと呼ばれるデカップリングフュージョンネットワークを提案する。
空間的時間的位置エンコーディングで時間的胚像を融合し、テーブル変換器を用いて受精率表インジケータ情報を抽出する。
実験により、我々のモデルは最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 7.35032402407274
- License:
- Abstract: Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code and dataset are available at https://github.com/Ou-Young-1999/DFNet.
- Abstract(参考訳): 経時的胚画像と母体肥厚表は妊娠予測に有用である。
しかし、現在の機械学習モデルでは、妊娠予測性能を向上させるために、2つのモード間の相補的な情報を十分に活用することはできない。
本稿では,IVF-ET妊娠予測のためのマルチモーダル情報を効果的に統合するためのデカップリング・フュージョン・ネットワークであるデフュージョンを提案する。
具体的には,異なるモダリティからの情報を関連のない情報に分離し,より繊細な融合を実現するデカップリング融合モジュールを提案する。
そして、時間的胚画像に空間的時間的位置エンコーディングを施し、テーブル変換器を用いて受精率表インジケータ情報を抽出する。
本モデルの有効性を評価するために,南医科大学から収集した4046症例を含む新たなデータセットを用いた。
実験の結果,我々のモデルは最先端の手法よりも優れていた。
一方、眼疾患予測データセットの性能は、モデルの優れた一般化を反映している。
私たちのコードとデータセットはhttps://github.com/Ou-Young-1999/DFNet.comで公開されています。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions [69.07284335967019]
2つのデータセットを使用して、2つの生成モデルをトレーニングします。
2-cell, 4-cell, 8-cell, morula, blastocyst など, 様々な細胞で合成胚画像を生成する。
これらは実画像と組み合わせて、胚細胞ステージ予測のための分類モデルを訓練した。
論文 参考訳(メタデータ) (2024-12-02T08:24:49Z) - TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation [91.50296404732902]
グラフデータの混合型分布を1つのモデルでモデル化する共同拡散フレームワークであるTabDiffを紹介する。
我々の重要な革新は、数値データと分類データのための連立連続時間拡散プロセスの開発である。
TabDiffは、既存の競合ベースラインよりも優れた平均性能を実現し、ペアワイドカラム相関推定における最先端モデルよりも最大で22.5%改善されている。
論文 参考訳(メタデータ) (2024-10-27T22:58:47Z) - Detecting Unforeseen Data Properties with Diffusion Autoencoder Embeddings using Spine MRI data [7.757515290013924]
深層学習は、診断と予後を改善するために大規模なデータセットを利用することによって、医療画像に大きく貢献してきた。
大規模なデータセットには、主題の選択と取得による固有のエラーが伴うことが多い。
拡散オートエンコーダの埋め込みによるデータ特性とバイアスの解明と理解について検討する。
論文 参考訳(メタデータ) (2024-10-14T07:24:26Z) - Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
放射線学レポート生成のためのtextbfCountertextbfFactual textbfExplanations-based framework (CoFE) を提案する。
反現実的な説明は、アルゴリズムによってなされた決定をどのように変えられるかを理解するための強力なツールとして、シナリオが何であるかを問うことによって役立ちます。
2つのベンチマークの実験では、反ファクト的な説明を活用することで、CoFEは意味的に一貫性があり、事実的に完全なレポートを生成することができる。
論文 参考訳(メタデータ) (2024-07-19T17:24:25Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era [3.2549142515720044]
本稿では,データマイニングのためのマルチモーダルデータフュージョンの新しいプロセスモデルを提案する。
我々のモデルは、効率と信頼性を改善しつつ、計算コスト、複雑さ、バイアスを減らすことを目的としている。
本研究は,糖尿病網膜症における網膜画像と患者のメタデータを用いた予測,衛星画像を用いた家庭内暴力予測,インターネット,国勢調査データ,放射線画像と臨床ノートによる臨床像と人口動態の同定という3つのユースケースを通じて有効性を示す。
論文 参考訳(メタデータ) (2024-04-18T15:52:42Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
本研究では,胎児の健康状態を予測するために,Support Vector MachineとExtraTreesのアンサンブルと呼ばれる頑健なアンサンブルモデルを提案する。
提案したETSEモデルは、100%精度、100%リコール、100%F1スコア、99.66%精度で他のモデルより優れていた。
論文 参考訳(メタデータ) (2023-05-26T16:40:44Z) - MedFuse: Multi-modal fusion with clinical time-series data and chest
X-ray images [3.6615129560354527]
マルチモーダルフュージョンアプローチは、異なるデータソースからの情報を統合することを目的としている。
オーディオ・ビジュアル・アプリケーションのような自然なデータセットとは異なり、医療におけるデータは非同期に収集されることが多い。
We propose MedFuse, a conceptly simple yet promising LSTM-based fusion module that can accommodate uni-modal as multi-modal input。
論文 参考訳(メタデータ) (2022-07-14T15:59:03Z) - Developmental Stage Classification of EmbryosUsing Two-Stream Neural
Network with Linear-Chain Conditional Random Field [74.53314729742966]
発達段階分類のための2ストリームモデルを提案する。
従来の手法とは異なり、2ストリームモデルでは時間情報と画像情報の両方を受け付けている。
2つのタイムラプス胚ビデオデータセット上で,本アルゴリズムを実証する。
論文 参考訳(メタデータ) (2021-07-13T19:56:01Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。