論文の概要: Mathematical Modeling and Machine Learning for Predicting Shade-Seeking Behavior in Cows Under Heat Stress
- arxiv url: http://arxiv.org/abs/2501.05494v1
- Date: Thu, 09 Jan 2025 14:32:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:58.621710
- Title: Mathematical Modeling and Machine Learning for Predicting Shade-Seeking Behavior in Cows Under Heat Stress
- Title(参考訳): 熱応力下における牛のシェードシーク行動予測のための数学的モデリングと機械学習
- Authors: S. Sanjuan, D. A. Méndez, R. Arnau, J. M. Calabuig, X. Díaz de Otálora Aguirre, F. Estellés,
- Abstract要約: 熱ストレスに晒された牛の日陰探索行動を予測するため,機械学習と組み合わせた数学的モデルを構築した。
このアプローチは、時間平均熱指標や蓄積熱応力測定値などの高度な数学的特徴を統合している。
ランダムフォレストとニューラルネットワークという2つの予測モデルは、正確性、堅牢性、解釈可能性について比較される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we develop a mathematical model combined with machine learning techniques to predict shade-seeking behavior in cows exposed to heat stress. The approach integrates advanced mathematical features, such as time-averaged thermal indices and accumulated heat stress metrics, obtained by mathematical analysis of data from a farm in Titaguas (Valencia, Spain), collected during the summer of 2023. Two predictive models, Random Forests and Neural Networks, are compared for accuracy, robustness, and interpretability. The Random Forest model is highlighted for its balance between precision and explainability, achieving an RMSE of $14.97$. The methodology also employs $5-$fold cross-validation to ensure robustness under real-world conditions. This work not only advances the mathematical modeling of animal behavior but also provides useful insights for mitigating heat stress in livestock through data-driven tools.
- Abstract(参考訳): 本稿では,牛が熱ストレスにさらされた場合の日陰探索行動を予測するために,機械学習と組み合わせた数学的モデルを開発する。
このアプローチは、2023年の夏に収集されたチタグアス(スペイン・バレンシア)の農場のデータから得られた、時間平均熱指標や蓄積熱応力測定値などの高度な数学的特徴を統合する。
ランダムフォレストとニューラルネットワークという2つの予測モデルは、正確性、堅牢性、解釈可能性について比較される。
ランダムフォレストモデルは精度と説明可能性のバランスが良く、RMSEの14.97ドルを達成している。
この方法論は、現実世界の条件下で堅牢性を確保するために、5-$のクロスバリデーションも採用している。
この研究は、動物行動の数学的モデリングを前進させるだけでなく、データ駆動ツールを通じて家畜の熱ストレスを緩和するための有用な洞察を提供する。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - Discovering symbolic expressions with parallelized tree search [59.92040079807524]
記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは、複雑性の問題に対処する際の精度と効率の重要なボトルネックに直面してきた。
本稿では,限定データから汎用数学的表現を効率的に抽出する並列木探索(PTS)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:41:15Z) - Meta-learning and Data Augmentation for Stress Testing Forecasting Models [0.33554367023486936]
モデルがストレスにさらされていると考えられるのは、高次のエラーや不確実性の増加など、ネガティブな振る舞いを示す場合である。
本稿では,MAST(Meta-learning and data Augmentation for Stress Testing)と呼ばれる新しいフレームワークに貢献する。
論文 参考訳(メタデータ) (2024-06-24T17:59:33Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Long-term stability and generalization of observationally-constrained
stochastic data-driven models for geophysical turbulence [0.19686770963118383]
ディープラーニングモデルは、現在の最先端の気象モデルにおける特定のバイアスを軽減することができる。
データ駆動モデルは、再分析(観測データ)製品から利用できない多くのトレーニングデータを必要とします。
決定論的データ駆動予測モデルは、長期的な安定性と非物理的気候の漂流の問題に悩まされる。
本稿では,不完全な気候モデルシミュレーションに基づいて事前学習した畳み込み変分自動エンコーダに基づくデータ駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-09T23:52:37Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
この方法は、アンサンブルカルマンフィルタとニューラルネットワークを反復的にデータ同化ステップで適用することで構成される。
データ同化は、代理モデルとスパースデータとを最適に組み合わせるために用いられる。
出力分析は空間的に完全であり、サロゲートモデルを更新するためのニューラルネットワークによるトレーニングセットとして使用される。
カオス的な40変数Lorenz 96モデルを用いて数値実験を行い、提案手法の収束と統計的スキルの両立を証明した。
論文 参考訳(メタデータ) (2020-01-06T12:26:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。