論文の概要: Orthogonal projection-based regularization for efficient model augmentation
- arxiv url: http://arxiv.org/abs/2501.05842v1
- Date: Fri, 10 Jan 2025 10:33:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:06.807350
- Title: Orthogonal projection-based regularization for efficient model augmentation
- Title(参考訳): 直交射影に基づく効率的なモデル拡張のための正規化
- Authors: Bendegúz M. Györök, Jan H. Hoekstra, Johan Kon, Tamás Péni, Maarten Schoukens, Roland Tóth,
- Abstract要約: ディープラーニングに基づく非線形システム同定は、実際に信頼性が高く高精度なモデルを作成する能力を示している。
ブラックボックスモデルは物理的解釈可能性に欠けており、しばしば学習のかなりの部分は、既に予想されていた、既知の振る舞いを捉えるのに費やされている。
潜在的な解決策は、物理に基づくモデリングと深層学習の識別の強みを組み合わせて、事前の物理知識を直接モデル構造に統合することである。
- 参考スコア(独自算出の注目度): 2.6071013155805556
- License:
- Abstract: Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and often a considerable part of the learning effort is spent on capturing already expected/known behavior due to first-principles-based understanding of some aspects of the system. A potential solution is to integrate prior physical knowledge directly into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning, convergence, and even model accuracy in learning-based augmentation of nonlinear baseline models.
- Abstract(参考訳): ディープラーニングに基づく非線形システム同定は、実際に信頼性が高く高精度なモデルを作成する能力を示している。
しかしながら、これらのブラックボックスモデルは物理的解釈可能性に欠けており、システムのいくつかの側面に関する第一原理に基づく理解のため、しばしば学習のかなりの部分は、既に期待されている、既知の振る舞いを捉えることに費やされている。
潜在的な解決策は、物理に基づくモデリングと深層学習に基づく識別の強みを組み合わせて、事前の物理知識を直接モデル構造に統合することである。
最も一般的なアプローチは、物理ベースと機械学習(ML)コンポーネントが並列に接続される追加モデル拡張構造を使用することである。
しかし、そのようなモデルは過度にパラメータ化され、それらを訓練することは困難であり、物理に基づく部分の解釈性が失われる可能性がある。
そこで本研究では,非線形ベースラインモデルの学習に基づく拡張において,パラメータ学習,収束,さらにはモデルの精度を向上させる直交射影ベース正規化手法を提案する。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Online Calibration of Deep Learning Sub-Models for Hybrid Numerical
Modeling Systems [34.50407690251862]
本稿では,ハイブリッドシステムのための効率的かつ実用的なオンライン学習手法を提案する。
オイラー勾配近似(Euler Gradient Approximation)のEGA(Euler Gradient Approximation)と呼ばれる手法は、無限に小さな時間ステップの極限における正確な勾配に収束することを示した。
その結果、オフライン学習よりも大幅に改善され、ハイブリッドモデリングにおけるエンド・ツー・エンドのオンライン学習の可能性を強調した。
論文 参考訳(メタデータ) (2023-11-17T17:36:26Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。