論文の概要: Manifold learning and optimization using tangent space proxies
- arxiv url: http://arxiv.org/abs/2501.12678v1
- Date: Wed, 22 Jan 2025 06:42:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:15.205616
- Title: Manifold learning and optimization using tangent space proxies
- Title(参考訳): 接空間プロキシを用いたマニフォールド学習と最適化
- Authors: Ryan A. Robinett, Lorenzo Orecchia, Samantha J. Riesenfeld,
- Abstract要約: 任意の多様体上の微分幾何学的プリミティブを効率的に近似する枠組みを提案する。
まず、多様体が閉形式で表現されるような環境で、このフレームワークの有用性を示す。
複素多様体構造が以前に確立された点雲データを用いて、正しい幾何を持つアトラスグラフが点雲から直接学習可能であることを示す。
- 参考スコア(独自算出の注目度): 1.7068557927955381
- License:
- Abstract: We present a framework for efficiently approximating differential-geometric primitives on arbitrary manifolds via construction of an atlas graph representation, which leverages the canonical characterization of a manifold as a finite collection, or atlas, of overlapping coordinate charts. We first show the utility of this framework in a setting where the manifold is expressed in closed form, specifically, a runtime advantage, compared with state-of-the-art approaches, for first-order optimization over the Grassmann manifold. Moreover, using point cloud data for which a complex manifold structure was previously established, i.e., high-contrast image patches, we show that an atlas graph with the correct geometry can be directly learned from the point cloud. Finally, we demonstrate that learning an atlas graph enables downstream key machine learning tasks. In particular, we implement a Riemannian generalization of support vector machines that uses the learned atlas graph to approximate complex differential-geometric primitives, including Riemannian logarithms and vector transports. These settings suggest the potential of this framework for even more complex settings, where ambient dimension and noise levels may be much higher.
- Abstract(参考訳): 本稿では,任意の多様体上の微分幾何学的原始体をアトラスグラフ表現を用いて効率的に近似する枠組みを提案する。
最初に、このフレームワークの実用性について、グラスマン多様体上の一階最適化に対して、その多様体が閉形式、具体的には実行時優位性で表されるような環境で示す。
さらに、複雑な多様体構造が以前に確立されていた点雲データ、すなわち高コントラスト画像パッチを用いて、正しい幾何を持つアトラスグラフが点雲から直接学習可能であることを示す。
最後に、アトラスグラフの学習が、下流の機械学習タスクを可能にすることを実証する。
特に、学習したアトラスグラフを用いて、リーマン対数やベクトル輸送を含む複素微分幾何学的プリミティブを近似する支援ベクトルマシンのリーマン一般化を実装する。
これらの設定は、周囲の寸法と騒音レベルがはるかに高くなるような、より複雑な設定のためのこのフレームワークの可能性を示している。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSMは、非剛体形状対応のための新しい教師なし学習手法である。
学習形態の集合に親和性グラフを自己教師型で構築する。
近年の形状対応ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2022-12-06T12:09:24Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Directed Graph Embeddings in Pseudo-Riemannian Manifolds [0.0]
一般的な有向グラフは、3つの成分を結合した埋め込みモデルで効果的に表現できることを示す。
本稿では,リンク予測のタスクに適用することで,この手法の表現能力を実証する。
論文 参考訳(メタデータ) (2021-06-16T10:31:37Z) - Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach [7.752212921476838]
表現学習における対称空間の体系的利用を提案する。
本研究では,組込み解析ツールを開発し,データセットの構造的特性を推定する。
提案手法は, 各種合成および実世界のデータセット上でのグラフ再構成タスクにおいて, 競合的ベースラインよりも優れる。
論文 参考訳(メタデータ) (2021-06-09T09:33:33Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
C 上の対称行列空間におけるグラフの連続表現を学ぶ。
これらの空間は双曲部分空間とユークリッド部分空間を同時に認めるリッチな幾何学を提供する。
提案するモデルは, apriori のグラフ特徴を見積もることなく, まったく異なる配置に自動的に適応することができる。
論文 参考訳(メタデータ) (2021-05-11T18:14:52Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
セマンティックセグメンテーションタスクにグラフ畳み込みを適用し、改良されたラプラシアンを提案する。
グラフ推論は、空間ピラミッドとして構成された元の特徴空間で直接実行される。
計算とメモリのオーバーヘッドの利点で同等のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-03-23T12:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。