論文の概要: Anomaly Detection in Double-entry Bookkeeping Data by Federated Learning System with Non-model Sharing Approach
- arxiv url: http://arxiv.org/abs/2501.12723v2
- Date: Fri, 01 Aug 2025 23:01:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:55.994203
- Title: Anomaly Detection in Double-entry Bookkeeping Data by Federated Learning System with Non-model Sharing Approach
- Title(参考訳): 非モデル共有によるフェデレーション学習システムによる二重エントリー簿記データの異常検出
- Authors: Sota Mashiko, Yuji Kawamata, Tomoru Nakayama, Tetsuya Sakurai, Yukihiko Okada,
- Abstract要約: ジャーナルのエントリーデータは極めて敏感であり、監査会社間で直接共有することは不可能である。
データコラボレーション(DC)分析に基づく新しい異常検出フレームワークを提案する。
提案手法は,8つの医療機関から収集した総合的および実世界のジャーナルエントリデータを用いて評価した。
- 参考スコア(独自算出の注目度): 3.827294988616478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is crucial in financial auditing, and effective detection requires large volumes of data from multiple organizations. However, journal entry data is highly sensitive, making it infeasible to share them directly across audit firms. To address this challenge, journal entry anomaly detection methods based on model share-type federated learning (FL) have been proposed. These methods require multiple rounds of communication with external servers to exchange model parameters, which necessitates connecting devices storing confidential data to external networks -- a practice not recommended for sensitive data such as journal entries. To overcome these limitations, a novel anomaly detection framework based on data collaboration (DC) analysis, a non-model share-type FL approach, is proposed. The method first transforms raw journal entry data into secure intermediate representations via dimensionality reduction and then constructs a collaboration representation used to train an anomaly detection autoencoder. Notably, the approach does not require raw data to be exposed or devices to be connected to external networks, and the entire process needs only a single round of communication. The proposed method was evaluated on both synthetic and real-world journal entry data collected from eight healthcare organizations. The experimental results demonstrated that the framework not only outperforms the baseline trained on individual data but also achieves higher detection performance than model-sharing FL methods such as FedAvg and FedProx, particularly under non-i.i.d. settings that simulate practical audit environments. This study addresses the critical need to integrate organizational knowledge while preserving data confidentiality, contributing to the development of practical intelligent auditing systems.
- Abstract(参考訳): 異常検出は財務監査において不可欠であり、効果的な検出には複数の組織からの大量のデータが必要である。
しかし、ジャーナルのエントリーデータは極めて敏感であり、監査会社間で直接共有することは不可能である。
この課題に対処するために,モデル共有型連合学習(FL)に基づくジャーナルエントリ異常検出手法が提案されている。
これらの方法は、機密データを外部ネットワークに格納するデバイスを接続する必要があるモデルパラメータを交換するために、外部サーバとの複数の通信を必要とする。
これらの制約を克服するために,データコラボレーション(DC)分析に基づく新しい異常検出フレームワーク,非モデル共有型FL手法を提案する。
本手法は,まず,生のジャーナルエントリデータを次元減少によるセキュアな中間表現に変換するとともに,異常検出オートエンコーダのトレーニングに用いる協調表現を構築する。
特に、このアプローチでは、生データを公開したり、デバイスを外部ネットワークに接続したりする必要はなく、プロセス全体は1ラウンドの通信しか必要としない。
提案手法は,8つの医療機関から収集した総合的および実世界のジャーナルエントリデータを用いて評価した。
実験結果から,FedAvgやFedProxなどのモデル共有FL手法よりも,実際の監査環境をシミュレートする非環境条件下で,本フレームワークは,個々のデータに基づいてトレーニングしたベースラインよりも優れた検出性能を発揮することが示された。
本研究は,データ機密性を保ちながら組織的知識を統合する必要性に対処し,実践的インテリジェント監査システムの開発に寄与する。
関連論文リスト
- Clustered Federated Learning for Generalizable FDIA Detection in Smart Grids with Heterogeneous Data [9.222461989780735]
False Data Injection Attacks (FDIA)は、スマートグリッドに深刻なセキュリティリスクをもたらす。
従来の集中型トレーニングアプローチは、プライバシのリスクやデータ共有の制約に直面するだけでなく、高い送信コストを発生させる。
本稿では,FedClusAvg(Federated Cluster Average)を提案する。
論文 参考訳(メタデータ) (2025-07-20T15:10:43Z) - DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
内的特徴(IF)と外的特徴(EF)(監査のための技術導入)に依存した既存手法の分類を新たに導入する。
回避攻撃(evasion attack)は、データセットの使用を隠蔽するために設計されたもので、偽造攻撃(forgery attack)は、未使用のデータセットを誤って含んでいることを意図している。
さらに,既存手法の理解と攻撃目標に基づいて,回避のための分離・除去・検出,偽造の逆例に基づく攻撃方法など,系統的な攻撃戦略を提案する。
私たちのベンチマークであるData dataBenchは、17の回避攻撃、5の偽攻撃、9の攻撃で構成されています。
論文 参考訳(メタデータ) (2025-07-08T03:07:15Z) - Privacy-Preserved Automated Scoring using Federated Learning for Educational Research [1.2556373621040728]
本研究では,教育評価における自動スコアリングのための統合学習フレームワークを提案する。
生徒の反応はエッジデバイス上でローカルに処理され、最適化されたモデルパラメータのみが中央集約サーバと共有される。
本研究では,9つの中学校における評価データを用いて,従来の学習モデルと統合学習に基づくスコアリングモデルの精度を比較した。
論文 参考訳(メタデータ) (2025-03-12T19:06:25Z) - A Two-Stage Federated Learning Approach for Industrial Prognostics Using Large-Scale High-Dimensional Signals [1.2277343096128712]
産業統計学は、アセットからの高次元劣化信号を利用して、その故障時間を予測するデータ駆動手法を開発することを目的としている。
実際には、個々の組織は信頼できる予測モデルを独立して訓練するのに十分なデータを持っていないことが多い。
本稿では,複数の組織が共同で予後モデルを訓練できる統計的学習に基づくフェデレーションモデルを提案する。
論文 参考訳(メタデータ) (2024-10-14T21:26:22Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Fin-Fed-OD: Federated Outlier Detection on Financial Tabular Data [11.027356898413139]
実世界のシナリオにおける異常検出は、動的でしばしば未知の異常分布による課題を引き起こす。
本稿では、データの機密性を損なうことなく、個々の組織における異常検出を強化するという課題に対処する。
本稿では,表現学習とフェデレーション学習技術を利用して未知の異常の検出を改善する手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:22:04Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Momentum Benefits Non-IID Federated Learning Simply and Provably [22.800862422479913]
フェデレートラーニングは大規模機械学習の強力なパラダイムである。
FedAvgとSCAFFOLDは、これらの課題に対処する2つの顕著なアルゴリズムである。
本稿では,FedAvgとSCAFFOLDの性能向上のための運動量の利用について検討する。
論文 参考訳(メタデータ) (2023-06-28T18:52:27Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Anomaly Detection through Unsupervised Federated Learning [0.0]
フェデレートラーニングは、分散リソースを活用する上で最も有望なパラダイムの1つであることが証明されています。
本稿では,前処理フェーズを通じて,クライアントをコミュニティにグループ化する手法を提案する。
結果の異常検出モデルは共有され、同じコミュニティのクライアント内の異常を検出するために使用される。
論文 参考訳(メタデータ) (2022-09-09T08:45:47Z) - Federated Anomaly Detection over Distributed Data Streams [0.0]
本稿では,異常検出,フェデレート学習,データストリーム間のブリッジ構築手法を提案する。
作業の包括的な目標は、分散データストリーム上でのフェデレーション環境での異常を検出することだ。
論文 参考訳(メタデータ) (2022-05-16T17:38:58Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
フェデレーション学習はコミュニケーション効率とプライバシ保護のトレーニングプロセスを提供する。
平均損失関数をナイーブに最小化する標準的なフェデレーション学習技術は、データの破損に弱い。
破損したデータソースに対して堅牢性を提供するために、自動重み付けロバストフェデレーテッドラーニング(arfl)を提案します。
論文 参考訳(メタデータ) (2021-01-14T21:54:55Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - Stratified cross-validation for unbiased and privacy-preserving
federated learning [0.0]
本稿では、重複レコードの繰り返し問題に焦点をあて、もし適切に扱わなければ、モデルの性能を過度に最適化的に見積もる可能性がある。
本稿では,階層化手法を活用して,フェデレート学習環境におけるデータ漏洩を防止する検証手法である階層化クロスバリデーションを紹介し,議論する。
論文 参考訳(メタデータ) (2020-01-22T15:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。