Achieving Carbon Neutrality for I/O Devices
- URL: http://arxiv.org/abs/2501.14774v1
- Date: Tue, 31 Dec 2024 05:54:31 GMT
- Title: Achieving Carbon Neutrality for I/O Devices
- Authors: Botao Yu, Guanqun Song, Ting Zhu,
- Abstract summary: Keyboards, mice, displays, and printers contribute significantly to greenhouse gas emissions.
This paper explores sustainable strategies for achieving carbon neutrality in I/O devices.
- Score: 8.361886528905341
- License:
- Abstract: Achieving carbon neutrality has become a critical goal in mitigating the environmental impacts of human activities, particularly in the face of global climate challenges. Input/Output (I/O) devices, such as keyboards, mice, displays, and printers, contribute significantly to greenhouse gas emissions through their manufacturing, operation, and disposal processes. In this paper, we explores sustainable strategies for achieving carbon neutrality in I/O devices, emphasizing the importance of environmentally conscious design and development. Through a comprehensive review of existing literature and best approaches, we introduces a framework to outline approaches for reducing the carbon footprint of I/O devices. The result underscore the necessity of integrating sustainability into the lifecycle of I/O devices to support global carbon neutrality goals and promote long-term environmental sustainability.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
Much of this debate has concentrated on direct impact without addressing the significant indirect effects.
This paper examines how the problem of Jevons' Paradox applies to AI, whereby efficiency gains may paradoxically spur increased consumption.
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - The unrealized potential of agroforestry for an emissions-intensive agricultural commodity [48.652015514785546]
We use machine learning to generate estimates of shade-tree cover and carbon stocks across a West African region.
We find that existing shade-tree cover is low, and not spatially aligned with climate threat.
But we also find enormous unrealized potential for the sector to counterbalance a large proportion of their high carbon footprint annually.
arXiv Detail & Related papers (2024-10-28T10:02:32Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques [4.106914713812204]
It's imperative to forecast CO2 emission trends and classify countries based on their emission patterns to effectively mitigate worldwide carbon emission.
This paper presents an in-depth comparative study on the determinants of CO2 emission in twenty countries with high Human Development Index (HDI), exploring factors related to economy, environment, energy use, and renewable resources over a span of 25 years.
arXiv Detail & Related papers (2024-05-01T21:00:02Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference [8.567865555551911]
This paper presents Sprout, an innovative framework designed to reduce the carbon footprint of generative Large Language Model (LLM) inference services.
Our proposed method balances the need for ecological sustainability with the demand for high-quality generation outcomes.
We demonstrate a significant reduction in carbon emissions by over 40% in real-world evaluations using the Llama2 and global electricity grid data.
arXiv Detail & Related papers (2024-03-19T16:53:53Z) - Recommendations for public action towards sustainable generative AI
systems [0.0]
This paper presents the components of the environmental footprint of generative AI.
It highlights the massive CO2 emissions and water consumption associated with training large language models.
The paper also explores the factors and characteristics of models that have an influence on their environmental footprint.
arXiv Detail & Related papers (2024-01-04T08:55:53Z) - When the Metaverse Meets Carbon Neutrality: Ongoing Efforts and
Directions [13.14817138936995]
The metaverse has recently gained increasing attention from the public.
It builds up a virtual world where we can live as a new role regardless of the role we play in the physical world.
It inevitably hinders the realization of carbon neutrality as a priority of our society, adding heavy burden to our earth.
arXiv Detail & Related papers (2023-01-18T16:25:18Z) - Towards a Systematic Survey for Carbon Neutral Data Centers [23.339102377319833]
Data centers are carbon-intensive enterprises due to their massive energy consumption.
It is estimated that data center industry will account for 8% of global carbon emissions by 2030.
This survey paper proposes a roadmap towards carbon-neutral data centers that takes into account both policy instruments and technological methodologies.
arXiv Detail & Related papers (2021-10-15T09:24:15Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.