論文の概要: A Cutting Mechanics-based Machine Learning Modeling Method to Discover Governing Equations of Machining Dynamics
- arxiv url: http://arxiv.org/abs/2501.14817v1
- Date: Mon, 20 Jan 2025 16:26:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-02 07:52:40.662009
- Title: A Cutting Mechanics-based Machine Learning Modeling Method to Discover Governing Equations of Machining Dynamics
- Title(参考訳): 切削力学に基づく機械学習モデリング手法による加工力学のGoverning方程式の解明
- Authors: Alisa Ren, Mason Ma, Jiajie Wu, Jaydeep Karandikar, Chris Tyler, Tony Shi, Tony Schmitz,
- Abstract要約: 本稿では, 機械力学に基づく機械学習(CMML)モデリング手法を提案する。
切削力学における既存の物理に基づいて、CMMLはまず、加工力学を規定する一般的なモデリング構造を確立する。
CMMLは, プロセス減衰とエッジ力をノイズデータから求めることで, 正確なミリング力学モデルを見出すことができることを示す。
- 参考スコア(独自算出の注目度): 1.5433033405381675
- License:
- Abstract: This paper proposes a cutting mechanics-based machine learning (CMML) modeling method to discover governing equations of machining dynamics. The main idea of CMML design is to integrate existing physics in cutting mechanics and unknown physics in data to achieve automated model discovery, with the potential to advance machining modeling. Based on existing physics in cutting mechanics, CMML first establishes a general modeling structure governing machining dynamics, that is represented by a set of unknown differential algebraic equations. CMML can therefore achieve data-driven discovery of these unknown equations through effective cutting mechanics-based nonlinear learning function space design and discrete optimization-based learning algorithm. Experimentally verified time domain simulation of milling is used to validate the proposed modeling method. Numerical results show CMML can discover the exact milling dynamics models with process damping and edge force from noisy data. This indicates that CMML has the potential to be used for advancing machining modeling in practice with the development of effective metrology systems.
- Abstract(参考訳): 本稿では, 機械力学に基づく機械学習(CMML)モデリング手法を提案する。
CMML設計の主な考え方は、機械力学と未知の物理をデータに統合し、自動モデル発見を実現することである。
切削力学における既存の物理学に基づいて、CMMLはまず、未知の微分方程式の集合で表される、加工力学を規定する一般的なモデリング構造を確立する。
したがって、CMMLは、効率的な切断力学に基づく非線形学習関数空間設計と離散最適化に基づく学習アルゴリズムにより、これらの未知の方程式をデータ駆動で発見することができる。
実験的に検証されたミリングの時間領域シミュレーションを用いて,提案手法の有効性を検証した。
CMMLは, プロセス減衰とエッジ力をノイズデータから求めることで, 正確なミリング力学モデルを見出すことができることを示す。
このことから, CMMLは, 効果的なメカノロジーシステムの開発にともなって, 機械モデリングの進歩に活用できる可能性が示唆された。
関連論文リスト
- Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
大規模なニューラルネットワークは予測タスクに優れるが、タンパク質工学や材料発見といった設計問題への応用には、オフラインモデルベース最適化(MBO)の問題を解決する必要がある。
機能的グラフィカルモデル(FGM)を用いてブラックボックス関数の構造を学習するトランスフォーマーベースのアーキテクチャであるCliqueformerを提案する。
化学および遺伝子設計タスクを含む様々な領域において、Cliqueformerは既存の方法よりも優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-17T00:35:47Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
現在の水理モデリング手法は、データ駆動機械学習アルゴリズムと従来の物理モデルを組み合わせたものである。
結果予測におけるMLの精度にもかかわらず、科学的知識の統合は信頼性の高い予測には不可欠である。
本研究では,概念的水文モデルのプロセス理解とMLアルゴリズムの予測効率を融合した物理インフォームド機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T16:26:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Code Generation for Machine Learning using Model-Driven Engineering and
SysML [0.0]
この研究は、機械学習タスクを形式化する以前の作業を拡張して、実践的なデータ駆動エンジニアリングの実装を促進することを目的としている。
本手法は,天気予報のためのケーススタディにおいて,実現可能性について評価した。
結果は、実装の労力を減らす方法の柔軟性と単純さを示します。
論文 参考訳(メタデータ) (2023-07-10T15:00:20Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
本稿では,グローバルに結合した地図システムから生じるマクロな動きについて考察する。
我々は、機械学習アプローチと粗粒度プロセスの遷移確率の直接数値計算の両方を用いて、マクロ力学のための粗粒度マルコフプロセスを構築した。
我々は,アトラクタの有効次元,メモリ効果の持続性,ダイナミクスのマルチスケール構造について重要な情報を推測することができる。
論文 参考訳(メタデータ) (2020-11-08T15:38:12Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
本研究では,物理正規化ガウス過程(PRGP)という新しいモデリングフレームワークを提案する。
この新しいアプローチは、物理モデル、すなわち古典的なトラフィックフローモデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化する。
提案手法の有効性を証明するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-07-14T17:27:23Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。