論文の概要: The empirical median for estimating the common mean of heteroscedastic random variables
- arxiv url: http://arxiv.org/abs/2501.16956v1
- Date: Tue, 28 Jan 2025 13:57:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:51.011546
- Title: The empirical median for estimating the common mean of heteroscedastic random variables
- Title(参考訳): 不連続確率変数の共通平均を推定するための経験的中央値
- Authors: Sirine Louati,
- Abstract要約: 異種セッティングにおける平均推定問題について検討する。
我々は、その推定誤差の上限と下限を同じ順序で設定する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We study the problem of mean estimation in the heteroscedastic setting. In particular, we consider symmetric random variables having the same location parameter and different and unknown scale parameters. Our goal is then to estimate their unknown common location parameter. It is an elementary topic but yet a not very well-studied one since we always make the assumption that the random variables are independent and identically distributed. In this paper, we study the median estimator and we establish upper and lower bounds on its estimation error that are of the same order and that generalize and improve recent results of Devroye et al. and Xia.
- Abstract(参考訳): 異種セッティングにおける平均推定問題について検討する。
特に、同じ位置パラメータと異なる未知のスケールパラメータを持つ対称確率変数を考える。
我々の目標は、未知の共通位置パラメータを推定することである。
これは基本的な話題であるが、確率変数が独立で同一に分布しているという仮定を常に行うので、あまりよく研究されていない。
本稿では、中央値推定器について検討し、同じ順序の推定誤差に基づいて上下境界を定め、Devroye et al と Xia の最近の結果を一般化し改善する。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Transformer-based Parameter Estimation in Statistics [0.0]
パラメータ推定のための変換器に基づく手法を提案する。
数値法で必要とされる確率密度関数を知る必要さえない。
提案手法は,平均二乗誤差で測定した手法と類似あるいは良好な精度を達成できることが示されている。
論文 参考訳(メタデータ) (2024-02-28T04:30:41Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Robust Statistical Comparison of Random Variables with Locally Varying
Scale of Measurement [0.562479170374811]
異なる次元の多次元構造のような局所的に異なる測定スケールを持つ空間は、統計学や機械学習において非常に一般的である。
我々は、そのような非標準空間に写像される確率変数の期待値(集合)に基づく順序を考えることで、この問題に対処する。
この順序は、極端ケースとして支配性や期待順序を含む。
論文 参考訳(メタデータ) (2023-06-22T11:02:18Z) - Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
そこで本研究では,既知の地道的相互情報を用いて,多種多様な分布群を構築する方法について述べる。
本稿では,問題の難易度に適応した適切な推定器の選択方法について,実践者のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2023-06-19T17:26:34Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
局所変換近傍における分類器の出力不変性の尺度を提案する。
私たちの測度は計算が簡単で、テストポイントの真のラベルに依存しません。
画像分類,感情分析,自然言語推論のベンチマーク実験において,我々の測定値と実際のOOD一般化との間に強い相関関係を示す。
論文 参考訳(メタデータ) (2022-07-05T14:55:16Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
本稿では,新しいランダム森林重み付き局所Fr'echet回帰パラダイムを提案する。
最初の方法は、これらの重みを局所平均として、条件付きFr'echet平均を解くことである。
第二の手法は局所線形Fr'echet回帰を行い、どちらも既存のFr'echet回帰法を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-10T09:10:59Z) - Reducing the Variance of Variational Estimates of Mutual Information by
Limiting the Critic's Hypothesis Space to RKHS [0.0]
相互情報(英: Mutual Information、MI)は、2つの確率変数間の依存性に関する情報理論の尺度である。
近年の手法では、未知密度比を近似するニューラルネットワークとしてパラメトリック確率分布や批判が実現されている。
我々は、高分散特性は、批評家の仮説空間の制御不能な複雑さに起因すると論じる。
論文 参考訳(メタデータ) (2020-11-17T14:32:48Z) - Propose, Test, Release: Differentially private estimation with high
probability [9.25177374431812]
我々はPTR機構の新たな一般バージョンを導入し、微分プライベートな推定器に対して高い確率誤差境界を導出する。
我々のアルゴリズムは、データ上の有界性仮定なしで中央値と平均値の差分プライベートな推定を行うための最初の統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-19T01:29:05Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。